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Abstract

This memo describes the equations used in the NOEMA time/sensitivity estimator available in the
GILDAS/ASTRO program.
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1 Generalities

1.1 The interferometric point source sensitivity

The point source sensitivity for an interferometric measurement reads

σJy =
J Tsys

ηatm

√
nant (nant − 1) dν∆t

, (1)

where σJy is the rms noise flux obtained by integration with an interferometer of nant identical antenna
during ∆t in a frequency resolution dν with a system temperature given by Tsys. J is the Jy/K typical
conversion factor of the interferometer. It reads

J = ηspec Jant, (2)

where ηspec is the spectrometer efficiency and Jant the typical conversion factor of each interferometer
antenna. Jant is defined as

Jant =
2k
S
, (3)

where k is the Boltzman constant, and S the effective antenna collecting area (eq. 3-113 in Kraus , 1982).
J characterizes the hardware, i.e. it assumes excellent atmospheric conditions. The atmospheric

decorrelation is taken into account through an additional efficiency factor, ηatm, that is directly related to
the atmospheric rms phase noise (φrms) through

ηatm = e−
φ2
rms
2 . (4)

Equation 1 is true only when the source is unresolved, i.e., there is no effect of beam dilution. In practice
this is rarely the case because the interferometer tries to resolve the source. Thus, this noise formula should
be used with caution when preparing the observations. In practice, this formula is useful when one wishes to
compare the sensitivity of two different interferometer. Indeed, this point source sensitivity is independent
of the interferometer synthesized beam that depends on the details of the observations and, in particular,
the interferometer configuration and the completeness of the Earth synthesis.

1.2 The interferometric extended source sensitivity

The sensitivity of an interferometer to an extended source reads

σK =
θ2

prim

θmaj θmin

Tsys

ηatm

√
nant (nant − 1) dν∆t

, (5)

where σK is the rms noise brightness, θprim the half primary beam width, and θmaj and θmin the half
beamwidth along the major and minor axes of the synthesized beam.

This formula clearly states that the sensitivity to extended sources depends on the dilution of the
synthesized beam in the primary beam. For a given interferometer, the primary beamwidth is a fixed
quantity while the synthesized beam is to first order proportional to the longest baseline in the current
interferometer configuration. Hence, doubling the largest baseline will multiply σK by a factor 4(= 22) for
the same integration time or it will multiply the integration time by a factor 16(= 24) in order to reach
the same sensitivity. This just reflects that while the interferometer tries to mimic a single-dish antenna
of same diameter as the largest baseline, all the antenna of the interferometer only fill a fraction of the
total collecting area of the single-dish, this fractions decreasing with a power of two as the baseline linearly
increases.

It is easy to show that σK and σJy are linked through

σK =
4 ln 2λ2

2π k θmajθmin
σJy, (6)

where λ is the observed wavelength. In practice, time/sensitivity estimator usually computes the relation-
ship between ∆t and σJy, and then the relationship between σK and σJy.
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Table 1: System temperatures used for NOEMA estimations in proposal mode
Summer Winter

Band 1
Freq. (GHz) 70 80 110 115 70 80 110 115
Tsys (K) 150 85 95 190 140 75 85 180
Band 2
Freq. (GHz) 135 150 170 135 150 170
Tsys (K) 140 140 200 110 110 160
Band 3
Freq. (GHz) 205 230 270 205 230 270
Tsys (K) 250 250 250 190 190 190

1.3 System temperature

The system temperature is a summary of the noise added by the system. This noise comes from 1) the
receiver and the optics, 2) the emission of the sky, and 3) the emission picked up by the secondary side
lobes of the telescope. It is usual to approximate it (in the T ?

a scale) with

Tsys =
(1 +Gim) exp {τsA}

Feff
[Feff Tatm (1− exp {−τsA}) + (1− Feff)Tcab + Trec] , (7)

whereGim is the receiver image gain, Feff the telescope forward efficiency, A = 1/ sin(elevation) the airmass,
τs the atmospheric opacity in the signal band, Tatm the mean physical atmospheric temperature, Tcab the
ambient temperature in the receiver cabine and Trec the noise equivalent temperature of the receiver and
the optics. All those parameters are easily measured, except τs, which depends on the amount of water
vapor in the atmosphere and which is estimated by complex atmospheric models.

In the ASTRO sensitivity estimator, the system temperature is computed when using the detailed
mode, while it is interpolated betweem tabulated values (see Table 1) in proposal mode. The values are
different for summer and winter due to the different atmospheric characteristics.

1.4 Elapsed telescope time

The goal of a time estimator is to find the elapsed telescope time (∆ttel) needed to obtain a given rms
noise, while a sensitivity estimator aims at finding the rms noise obtained when observing during ∆ttel.

The total integration time spent on-source ∆ton is shorter than the elapsed telescope time due to
several factors:
1. At the beginning of a project a significant time (tmin ∼ 40 minutes) is spent in receiver tuning and
calibration observations before observing the actual astronomical target. This means that even for a very
short ON source time, a project cannot be shorter than tmin.
2. After this initial phase, the observing mode does not dedicate 100% of the time to the astronomical
target. Part of the time is spent for calibration (pointing, focus, atmospheric calibration,...) and to slew
the telescopes between useful integrations.

As of Gildas Jul17 release, the input time of the ASTRO sensitivity estimator is telescope time. The
actual on source time is then computed taking into account those two points.

For long projects the relation between on source and telescope time is obtained the following:

∆ttel = ηtel ∆ton, (8)

where ηtel quantifies the efficiency of the observing mode, estimated to be about 1.6. This is valid when
∆ttel is on the order of a a transition time ttrans ∼ 3.2 h (i.e. ∆ton ∼ 2h)
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Figure 1: Relation between ∆ttel and ∆ton as implemented in ASTRO and PMS sensitivity estimators

For shorter projects, an additional time offset is included to take into account the inition calibra-
tions/tuning. The time offset depends on the total time: for very short times, it is on the order of
tmin =40 minutes. It decreases following a quadratic low when the total time increases and is null at
∆ttel = ttrans =3.2 h. The exact equation is given below (Eq. 9) and is illustrated in Fig. 1.

∆ttel = ηtel ∆ttel + tmin (
ttrans −∆ton

ttrans
)2 (9)

1.5 The number of polarizations

All NOEMA antennas are equipped with dual polarization receivers. They measure the signal coming
from the pointed direction in two perpendicular polarizations in the same frequency range. For the current
generation of receiver (2006) and correlators, one or two polarizations are processed by the correlators,
depending on the project settings. We thus have to introduce the number of polarizations npol, which can
be set to 1 or 2 and insert it in the radiometer equation with:

σJy =
J Tsys

ηatm

√
nant (nant − 1) dν npol ∆ton

. (10)

2 Observing mode

There are three main observation kinds.

Single-source, single-field observations where the telescope tracks a single source during the full
integration time. This mode is used when the signal-to-noise ratio is the limiting factor.

Track-sharing, single-field observations where the telescope regularly cycles between a few close-by
sources. This mode is used when the sources are so bright that the limiting factor is the Earth
synthesis, not the signal-to-noise ratio.

Single-source mosaicking where the telescope regularly cycles between close-by pointings that usually
follows a hexagonal compact pattern whose side is λ/(2dprim), where dprim is the diameter of the
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interferometer antennas. This modes is used to image sources wider than the primary beam field of
view.

In the following, we will work out the equations needed by the time/sensitivity estimator for observing
mode.

2.1 Single-source, single-field observations

That’s the simplest case. The point source sensitivity in this case is

∆ton = ηtel ∆ttel, and σJy =
J Tsys

ηatm

√
nant (nant − 1) dν npol ∆ton

. (11)

2.2 Track-sharing, single-field observations

In this case, the telescope time is equally divided between the nsou observed sources. This yields

∆ton =
ηtel ∆ttel

nsou
, and σJy =

J Tsys

ηatm

√
nant (nant − 1) dν npol ∆ton

. (12)

Note that it is technically feasible to observe sources in track-sharing with different integration times.
This case is not implemented yet in the sensitivity estimator and the different sensitivities should be
computed independently.

2.3 Mosaicking

In this case, the telescope time is equally divided between the npoint pointings used to cover the full extent
of the source. It thus seems similar to the track-sharing, single-field observations. However, there are two
subtleties.

1. The processing (imaging and deconvolution) of a mosaic implies a division by the primary beam of
the interferometer. As the primary beam is to first order a Gaussian decreasing to zero, this implies
that the noise of the mosaic will vary over the field of view. In particular it increases sharply at the
edges of the field of view.

2. The cycling of the pointings of the mosaic is done to Nyquist sample the observed field of view.
This implies that there is an important redundancy between the pointings, contrary to track sharing
where the sources are supposed to be fully independent on the sky. For instance, when mosaicking
with a hexagonal compact pattern, each line of sight will be observed by 7 contiguous pointings,
except at the mosaic edges.

The time/sensitivity estimator will thus have to link the elapsed telescope time to cover the whole
mapped region to the sensitivity in each independent resolution element. To do this, we need to introduce

• Amap and Abeam, which are respectively the area of the map and the area of the resolution element.
The map area is a user input while the resolution area is linked to the telescope full width at half
maximum (θ) by

Abeam =
0.8π θ2

4 ln(2)
, (13)

The 0.8 factor represents the truncation of the beam at 20% of its maximum, which is performed
during the imaging process. Three tests can be checked on Amap:

1) Amap must be larger than 2 times Abeam (below this we advise to use the track sharing mode with
two independent fields);
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2) Amap must be smaller than a limit defined by to the shortest integration time achievable with
NOEMA (Auv

max). The distance covered by a visibility in the uv-plane during an integration should
always smaller than the distance associated to tolerable aliasing (see Pety and Rogŕıgues-Fernández
2010 for more details). This can be written as the following condition (Eq. C.3 in the article):

δt

1s
<<

6900
θalias/θsyn

(14)

where δt is the integration time, θalias the map angular size, and θsyn the angular resolution.

For a given angular resolution, the interferometer minimum integration time corresponds to a max-
imal map size according to:

Auv
max =

6900× θsyn

δtmin η
(15)

where η is a ad-hoc integer set to 5 to ensure the condition defined in Eq. 14.

3) Amap must also be smaller than a limit related to the maximum number of fields observable in
a given time with NOEMA (Acycle

max ). Presently, we assume that all the pointings should be covered
within 1.5 cycle on source between two calibrators, i.e. ∼35 min.

The minimum integration time of NOEMA is 10s. However, the slewing time between two positions
being 8s, it is recommanded, in order to limit overheads, to spend at least 20s per position (i.e.
2×10s if a short integration time is needed to verify Eq. 14). As a result, the number of fields that
can be covered is:

ncycle
max = 35× 60/(20 + 8) = 75. (16)

Assuming a standard sampling for the mosaic this corresponds to 75×4/7 independent beams and
we have:

Acycle
max = ncycle

max

4
7
Abeam ∼ 43Abeam (17)

This Acycle
max is a technical limitation for a given observing track. Larger maps can be built putting

together different sub-maps observed in different tracks.

• The number of independent measurements (nbeam) in the final map which is given by

nbeam =
Amap

Abeam
. (18)

Because of the redundancy, we must have nbeam < npoint.

The on-source time is then shared between nbeam independent measurements. This yields

∆ton =
ηtel ∆ttel

nbeam
and σJy =

J Tsys

ηatm

√
nant (nant − 1) dν npol ∆ton

. (19)

Note that ηtel must be sligthly smaller for a mosaic than for a single-field, single-source observation because
the telescope have to slew between the fields, increasing the overheads. But this is a second order effect.
Finally, this noise estimate is correct at any point of the mosaic that is covered by the same number of
pointings (in particular, the mosaic center). It will be higher at the mosaic edges.
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