IRAM Memo 2013-2

CLASSIC Data Container

S. Bardeau!, V. Piétu!, J. Pety!?

1. IRAM (Grenoble)
2. LERMA, Observatoire de Paris

October, 37 2013
Version 1.0

Abstract

The CLASS/CLIC Data Format are digital formats used to describe single-dish/interferometric
radio-astronomy data. They can be described in two layers: 1) a CLASSIC Data Container, which is
generic enough to store many kind of data, typically several observations which gather observational
parameters with actual data, and 2) the CLASS/CLIC Data Format itself, which make a particular
use of the CLASSIC Data Container.

The size of the datasets produced by the IRAM instruments experience a tremendeous increase
(because of multi-beam receivers, wide bandwidth receivers, spectrometers with thousands of channels,
and/or new observing mode like the interferometric on-the-fly). This implied that the CLASS/CLIC
Data Format were reaching common limits in the size of data which could be stored. To solve these
issues, the CLASSIC Data Container standard was revised. This documents aims to describe the new
standard. A companion document describes the GILDAS library which implements this standard
and which is now used by CLASS and CLIC.

Related documents: The CLASSIC Library, IRAM memo 2013-3

CONTENTS

Contents
1 Overview 3
2 Detailed description 3
2.1 The File Descriptor e e 3
2.2 The ExXtensions e 7
2.2.1 The Extension Index 7
2.2.2 The File Entries e 7
3 Storage efficiency 9
4 Basic file reading example 9
A The CLASSIC Data Container Version 1 12

1. OVERVIEW

We describe here the CLASSIC Data Container standard Version 2. Its historical version (Version
1) and the difference between the two versions are detailed in the section A. Only the CLASSIC Data
Container standard is detailed here; the GILDAS implementation of this standard (e.g. reading and
writing) is described in an other memo about the CLASSIC Library. We will name application the
GILDAS programs (e.g., CLASS, CLIC, ...) that use the CLASSIC Data Container standard.

1 Overview

Figure 1 tries to reproduce at best the structure of a CLASSIC Data Container file. This can be
summarized as follows:
1 File = 1 File Descriptor + 0 or more Extensions,

e File descriptor: contains file information (system type, record length, addresses of extension among
others).

e Extension = 1 Extension Index + 1 or more File Entries,

— Extension Index: for each entry of the extension, it contains a few criteria characterizing an
entry (to allow quick entry search) and the address of the entry
— Entry = 1 Entry Descriptor + 1 Observation,

* Entry Descriptor: contains parameters describing the entry (e.g. number of sections and
their addresses, address and length of data).

x Observation = 0 or 1 Observation Header + 0 or 1 Data array
- Observation Header = 0 or more Sections
- Data array: the data themselves

The extension index serves to index some important information about the file entries. For convenience,
we also define the concept of File Index, which is the (virtual) collection of all the indexes of all the
extensions in the file. The CLASSIC Data Container enforces the following rules:

1. the File Descriptor is always found in the first record in the file.

2. the various elements involved in the data container are found thanks to the addresses provided by
their parent elements. Any other mean or assumption is not guaranteed to work.

3. the File Entries have an entry number which is their rank in the File Index.

2 Detailed description

A CLASSIC file is a Fortran, Direct-Access, Unformatted (binary) file satisfying the so-called CLASSIC
Data Container. Such files are usually read and written by a Fortran library and accessed record by record
of equal length. A CLASSIC file contains only (in the following order):

1. a File Descriptor,

2. zero or more Extensions.

2.1 The File Descriptor

Table 1 summarises the contents of the File Descriptor. It always spreads (entirely and only) over the first
record of the file. It describes how the file contents are stored. It is composed of 3 groups of parameters:

e The first group describes the parameters tunable by the application, and which will affect the whole
file.

2. DETAILED DESCRIPTION

Classic File Version 2

File Descriptor

Extension #1

Extension #2

Extension #N
Extension Index

Figure 1: CLASSIC Data Container diagram. In this example, the file has N extensions. Extensions
use an exponential growth mode (1, 2, ... 8 records devoted to the extension indexes). The last extension
is incomplete and contains only 5 file entries, while there is room for 32 in the extension index. The file
entries have different number of sections, and sections and data have variable lengths.

4

2. DETAILED DESCRIPTION

Table 1: File Descriptor Version 2

Position Parameter Fortran Kind | Purpose Unit

1 code Character*4 | File code -

2 reclen Integer*4 Record length words
3 kind Integer*4 File kind -

4 vind Integer*4 Index version -

) lind Integer*4 Index length words
6 flags Integer*4 Bit flags. #1: single or multiple, -

#2-32: provision (0-filled)

7:8 xnext Integer*8 Next available entry number -

9:10 nextrec Integer*8 Next record which contains free space | record
11 nextword Integer*4 Next free word in this record word
12 lex1 Integer*4 Length of first extension index entries
13 nex Integer*4 Number of extensions -

14 gex Integer*4 Extension growth rule -
15:reclen aex(:) Integer*8 Array of extension addresses record

Table 2: CLASSIC Data Container encoding of the system and kind. Most of the recent computers are
little endian (IEEE) machines. The (very) old PDP-11 files (with Integer*2 words) are recognized but
not supported anymore (XX means 2 non-blank characters). Note that in V2 files, the single/multiple
attribute is not encoded anymore in this code.

Kind ‘ IEEE EEEI VAX PDP-11
V1 multiple | ‘1AUL" ‘1BUW “luudy’ 1uxXx?
V1 single | ‘9AULL” ‘9BUL ‘9uUL’ N/A

V2 QAU 2BU 2uuLwr N/A

1. the first 4 bytes of the file are a code identifying the files. They also provide the bit encoding
system, as detailed in Table 2.

2. the next word (reclen) is the record length of this Fortran direct-access file. It is stored in
4-bytes word units!. There is no restrictions for reclen other than the Fortran ones, except
that at least one extension address should fit, i.e. reclen must be at least 16 words. It can be
a non-power of 2, it can be odd, but programmer should keep in mind file access efficiency.

3. the kind of the file is stored next (e.g. CLASS, CLIC, or any other application). This helps
the reading application to detect whether it opens a file which it is able to read. In order to
avoid conflicts, the possible values are NOT let free to the applications (see Table 3).

1A 4-bytes word is defined here as a block of 4 consecutive bytes. It is the basic unit for all the kind of variables involved
here, e.g. a Fortran Integer*4 uses 1 word and a Fortran Character*12 uses 3 words.

Table 3: CLASSIC Data Container encoding of the owner (kind parameter in the File Descriptor). These
values are NOT let free to the calling application to avoid conflicts.

Owner Identifier
CLASS 1
CLIC 2
MRTCAL 3

2. DETAILED DESCRIPTION

4. the next 2 words are the Index Version and Length (see section 2.2.1). The Index is a program-
specific object, and it is likely to evolve through time. Note that there is no restriction on the
Index Length (it can be a non-power of 2, or odd).

5. the next word is used as 32 bit-flags, describing some boolean attributes of the file. Currently
only the first? bit is used to indicate if the observation numbering is single or multiple. The other
31 bits are provisioned and set to 0, indicating the historical status of some future attributes.

e The 2nd group indicates where the next free memory positions are available.
6. xnext provides the next free entry number. File entries are numbered continuously from 1 to

xnext-1.

7. nextrec identifies the record at the end of the file where space is still available to append new
data.

8. nextword indicates where this space starts in the nextrec record.
e The last group describes how the size of extensions increases and the extension addresses.

9. lex1 is the length of the first extension, in number of entries. This length can vary from one
file to another, and can be considered as a scaling factor for the extensions.

10. nex is the number of extensions currently in use in the file. It can increase or not when an entry
is appended to the file.

11. gex describes the extension growth (see below).

12. finally aex(:) is an array providing the starting record number for each extension index. Since
they are stored as Fortran Integer*8 values, 2 words are needed for each address. Given the fact
that the aex(:) array fills the 1st record up to its end, it is limited to nex = (reclen — 14)/2
elements, which is the maximum number of extensions (mex) in the file.

The extension can either all have the same size or exponentially increase their size. Both cases can be
summarized as
lexp(iex) = lexl x m*®~! (1)

where lex g (iex) is the size of the iex-th extension index in number of file entries. The total number of
file entries which can be stored in a file with nex extensions is then:

Nentry = lexl X (mo +ml+m?+ .. +mne$—1) (2)

If the mantissa m is 1, all the extensions have the same size (Nentry = lexl x nex). If m > 1, the growth
is exponential (Neptry = lexl x (27 —1) if m = 2). Only equal size extensions were used in the version 1
of the CLASSIC Data Container. The new exponential growth solves two problems: 1) the file size will
remain small when it contains only a few file entries (no pre-allocation of a large index), and 2) there is
virtually no more limit on the number of entries the file can hold3.

If m is non-integer, floating point computations should be involved. In order to leave no room for
round-off problems or ambiguity, the following rules shall be enforced:

1. m>1.
2. m is limited to 1 significant digit after the coma.

3. the number of records devoted to each extension index must be rounded to the lowest upper-or-equal
integer value large enough to store the lexg(iex) entry indexes:

lexg(iex) x lind)

(3)

lexg(iex) = ceiling < i
reclen

2first in the sense of the Fortran bit model, i.e. processor-independent.
3In practice, the number of file entries will be limited to 263 — 1, the largest integer number coded as a IEEE Integer*s,
e.g. mex =63 if m =2

2. DETAILED DESCRIPTION

Given these rules, the extensions growth can easily be implemented with integer multiplications and
divisions. To simplify the application of rule 2, m is stored as an integer value in the gex element in the
File Descriptor, multiplied by a factor 10:

gex = nint(10 x m) (4)

This means e.g. that equal-size extensions use gex = 10 and a 2-based exponential growth uses gex = 20.

2.2 The Extensions

. tex—1 . .
Each extension iex contains a set of entries, up to lexg(iex) = lexl X (%) entries, according to the

equations 1 and 4. It is divided in 2 main parts:
1. the Extension Inder,
2. the File Entries.

When an extension is full (i.e. the number of entries has reached its limit), new file entries are added to a
new extension.

2.2.1 The Extension Index

Each entry is basically described by a few elements in its associated Entry Index. Its length is given by
the Index Length element in the File Descriptor (1ind). The interpretation of the bytes of the Entry Index
is delegated to the application, with one restriction: the application must provide a way to find the entry
in the file. This is achieved thanks to the 2 first elements in the entry index, which must give the entry
address in the file, i.e. its starting record (absolute position in the file, coded as a Fortran Integer*8) and
word (relative from the beginning of this record, coded as a Fortran Integer*4). Since the interpretation of
most of the Entry Index is delegated to the application, the CLASSIC Data Container provides an Index
Version parameter (vind). The application can use its own versioning with the following restriction: the
Index Version must be greater than 1 in File Version 2*. The couple vind + lind can be used as desired
by the application to update and ensure backward support of all the revisions of the Entry Index.

The Extension Index is the collection of the entry indexes of the file entries gathered in the extension.
It always starts at the beginning of a record. The 1ind words are repeated contiguously, in the limit of
lexg(iex) entry indexes. If a non-integer number of indexes fit in one record (reclen/lind ¢ N), entry
indexes can overlap two records. The last bytes of the last record in the extension index may be left
empty if the last entry index does not reach the end of the record. This mathematically translates into a
ceiling statement in Eq. 3. Space is always provisioned (the lexg(iex) records) for the lex g (iex) entries
description, even though the associated file entries are not yet present.

2.2.2 The File Entries

The data written in each entry is very variable, e.g. spectra may have very different number of channels.
As a consequence, the starting address of an entry cannot be computed from the file entry number and is
stored in the Entry Index. An entry does not necessarily start and end on record boundaries. It is divided
into

1. the Entry Descriptor,

2. the Observation itself.

2. DETAILED DESCRIPTION

The Entry Descriptor The Entry Descriptor gives a technical description (version of the observation,
memory layout, ...) of the associated observation in the Entry (see Table 4). Except the code identifier,
all these elements can be different from one entry to an other:

1. the code is a unique identifier used to check the file consistency. It is always set to the 4 characters
‘20U (number 2 followed by 3 blanks).

2. the version can be used by the application to keep track of the evolutions of the content of the
sections and/or data array.

3. nsec describes the number of sections actually written in the current descriptor.

4. nword is the actual number of words of the whole entry, this descriptor included. It is used to prevent
overflow at reading/writing time.

5. adata is the data address, in words from the beginning of the descriptor.

6. ldata is the data length, in words (4-byte words whatever the kind and precision of data actually
stored).

7. xnum is the entry number, available here for self-consistency of the file (i.e. the entry being N** in
the file index must have xnum = N).

8. seciden is an array of nsec elements providing the identifiers (Integer*4 codes, private to the
application) of the sections present in the observation.

9. secleng is an array of nsec elements providing the length of each of these sections.

10. secaddr is an array of nsec elements providing the addresses of each of these sections, in words from
the beginning of the entry.

msec is the maximum number of sections which can be written in a given entry (while nsec is the
actual number of sections which are written in this entry). msec is let to the choice of the application. It
is not stored in the descriptor, but makes sense at the time each new section is written and the descriptor
is filled accordingly. If the application writes less nsec than msec, the remaining space in the descriptor
is left empty. This can lead to non-negligible byte losses (see Section 3). As nsec, msec may vary from
entry to entry in the same file.

The Observation The science measurements associated to each observation are shared between

e the Observation Header. Each Observation Header is divided in several sections, containing scalar
values or arrays. They are defined and controled by the calling application. Each type of section is
coded with an integer code, known only by the application. It is not required that all sections be
present. The space available for the section elements is reserved at first write time (secleng(i)).
One or more updates of the section, including on its number of elements, are possible, as long as
they keep the length smaller or equal than the reserved space. Enlarging a section during an update
is impossible and is then forbidden®.

e and usually (but not necessarily) Data, e.g., a spectrum coded as a single floating point array of
intensities.

4In other words: Index V1 in File V1, Index V2 or more in File V2. Index V1 can not be used in File V2 since at least
the first word (Entry Address) is different.

5If enlarging of a section is required, the application or the user can write a new version of the observation in the same
file (multiple files) or in a new file.

3. STORAGE EFFICIENCY

The final user will probably have access only to these information, all other information described in this
document remaining hidden. Sections and Data can be mixed in any order. They are not necessarily
aligned on the file records. Their address can be retrieved from the Entry Descriptor. The first element
always starts after the entry descriptor, i.e. at the address 114+ 5 x msec+ 1, in words from the beginning
of the entry. This structure makes observations self-contained: all the associated information is recorded
on a few contiguous file records.

3 Storage efficiency

The CLASSIC Data Container is defined such as it introduces unused bytes here and there. We paid
special attention to reduce this to a negligeable fraction of the file. In particular, the Version 1 of the
CLASSIC Data Container had an important source of unused bytes, i.e. the fact that each entry had to
start at the beginning of a record. Depending on the record length in comparison to the entry size, the
number of lost words goes from 0 to reclen-1. Which can lead to terrible results (e.g. with 1+ € records
actually used for 2 allocated, the mathematical limit is 50% of the file unused). This has been addressed
in the Version 2: Each entry can now start anywhere in a record, i.e., right after the previous entry. The
key point to keep in mind in this discussion is that all of these unused bytes will still be read (at least by
the CLASSIC Library implementation because of the record per record access to the file). This means
basically that if 10% of the file is unused, 10% of the time is spent for useless I/O.

This section is a exhaustive account of the storage efficiency, in CLASSIC Data Container version 2.

1. The only lost bytes in the File Descriptor are associated to the unused extension addresses. Their
impact is low.

2. The File Index has several sources of bytes loss. The first is the unused bytes in the Entry Index
itself, but this is under the control of the application. Note that this value is proportional to the
number of entries in the file.

3. The second element in the Index is the provisioned but unused bytes in the last extension index.
This point explains why a file with a few entries can be very large (depending on the lex1 scaling
factor).

4. The third source of loss has been added by the Version 2 format. Since a non-integer number of
entry indexes can fit in one record, there can be lost words at the end of the last record devoted to
each extension indexes. However this remains small (at most lind — 1 words per extension).

5. In the Entry Descriptor, space for up to msec sections has to be pre-allocated while only nsec will
be used. The effect can become important because it is proportional to the number of entries in the
file. However this particular point is under the control of the calling application. This application
always can dimension the Entry Descriptor to its exact useful size.

4 Basic file reading example

Given the rules and elements described in the previous section, we list here how we can find, for example,
the first section and the data array of the ient'” entry.

1. check the first word of the file: make sure that file code is one of those described in Table 2, and
if you will need to convert all the values from one bit encoding system to another. Hereafter we
assume you are reading a version 2 file.

2. the second word provides the record length (in words). Many quantities (e.g. addresses) are provided
in the CLASSIC Data Container in number of records of this length.

3. with the third word, the application can check that it reads a file it understands.

4. BASIC FILE READING EXAMPLE

5th

4. read 1lind, the entry index length, in the word. It will be used below.

5. then read lex1 and gex in the 12** and 14" words. They give the number of entries in the first
extension, and the rule for the number of entries in the subsequent extensions. Resolving Eq. 2 you
should be able to find in which extension the ient*" entry is (say iezt"), and the relative number of
this entry in its extension (say jent(iex)).

6. find where this extension should be found. Its address is available in the two words starting at
13 + 2 x dex in the file descriptor.

7. knowing the relative number jent of the entry in its extension iex, you can find in which relative
record (from the beginning of the extension index) the entry index is (((jent — 1) x lind)/reclen),
and where the starting word in this record (mod((jent — 1) x lind, reclen) + 1).

8. read the 1ind words of the entry index. The first 3 words provide the entry address: the record (first
and second words) and starting word (third word). The others words are application specific.

9. read the given record, at the given position. The first words are the entry descriptor, as detailed in
Table 4.

10. then read the number of section (nsec) defined in the descriptor. The length of the first section is
found at the words 12-13, and its address at 12 + 2 X nsec and next word. Now you can read them,
taking also care of possible records overlap.

11. in order to give a signification to these bytes, get the section identifier in the word 12+ 4 X nsec and
refer to the documentation of the application which wrote them. Congratulations, you’ve just read
the first section!

12. The data address (adata, from the beginning of the entry) and length (1data), both in number of
words, are encoded as two Integer*8 from words 6 to 9 in the Entry Descriptor. Just read the 1data
words starting from adata, taking care that the data array can overlap several records. Now you
have just read the data array.

Acknowledgments. The authors thank S. Guilloteau, R. Lucas and T. Forveille for useful comments
about this document.

10

4. BASIC FILE READING EXAMPLE

Table 4: Entry Descriptor Version 2

Position Parameter Fortran Kind | Purpose Unit
1 code Character*4 | Identifier of Entry Descriptors -

2 version Integer*4 Observation version -

3 nsec Integer*4 Number of sections -

4:5 nword Integer*8 Length of this entry (descriptor included) | words
6:7 adata Integer*8 Data address word
8:9 ldata Integer*8 Data length words
10:11 Xnum Integer*8 Entry number -
12:... seciden(l:nsec) Integer*4 Section numbers (identifiers) code
....... secleng(l:nsec) Integer*8 Section lengths words
...:1145*nsec secaddr(l:nsec) Integer*8 Section addresses word
...:1145*msec (unused) Empty room for up to 'msec’ sections

11

A

A. THE classic DATA CONTAINER VERSION 1

The CLASSIC Data Container Version 1

This appendix briefly describes the historical version of the CLASSIC Data Container.

Table 5: File Descriptor Version 1

Position Parameter Fortran Kind | Purpose

1 code Character*4 | File code

2 next Integer*4 Next free record

3 lex Integer*4 Length of first extension (number of entries)
4 nex Integer*4 Number of extensions

5 xnext Integer*4 Next available entry number

6:2*reclen ex(:) Integer*4 Array of extension addresses

Note the following remarks about the File Descriptor in the Version 1:

1.
2.

10.

the File Code was starting with the letter ‘1’ or ‘9’ (see Table 2).

the record length was always set to 128 words. This proved to be a limiting factor in the I/O
accesses, especially for data acquisition at the telescope where the system buffering is disabled for
the real-time processing purpose.

there was no File Kind. The reading application had to open the observations one by one and accept
or reject them depending of their kind, assuming the section providing this information could be
read from any program.

it was difficult to update the Index (no versioning). Its length was always 32 words, some of them
unused.

the single or multiple attribute was encoded in the File Code.

since next was encoded as a Fortran Integer*4, it was impossible to write a file larger than 23! — 1
records (~ 1 TB).

file entries always started at the beginning of the next available record, possibly leaving unused
space in the previous record.

all extensions had the same length (lex). This made impossible to have a file at the same time
i) dimensioned to accept a large number of entries, and ii) remaining small if storing a few entries
(because of the Index provision in each extension).

the xnext parameter was encoded as a Fortran Integer*4, which limited the maximum number of
entries per file to 231 — 1.

the extension addresses were spreading over the 2 first records, which always implied at most 251
extensions.

Regarding the File Index in Version 1 Files, not much is to be said since it is not strictly under the
control of the CLASSIC Data Container. However, here also the first word of the Index is expected to
be the Entry address (in absolute records), but encoded as a Fortran Integer*4. Note also that since its
length was always 32 words, 4 of them fitted exactly in one record (always 128 words).

In the Entry Descriptor Version 2, only the number of records used by the entry (nbloc, redundant
with nword) and the unused words have been removed in comparison to the Version 1 (see Table 6). In
version 1, the various addresses and measurements parameters were coded as Fortran Integer*4, which
basically limited the Observation size to 23! — 1 words (~ 8 GB).

The Table 7 summarizes the internal limits of the CLASSIC Data Container Version 1. All these
limits could be gathered into 3 main categories

12

A. THE classic DATA CONTAINER VERSION 1

Table 6: Entry Descriptor Version 1

Position Parameter Fortran Kind | Purpose

1 code Character*4 | Identifier of Entry Descriptors

2 nbloc Integer*4 Number of records of this entry

3 nword Integer*4 Number of words of this entry

4 (unused)

5 adata Integer*4 Data address (in words) from the beginning of the entry
6 ldata Integer*4 Data length (in words)

7 (unused)

8 nsec Integer*4 Number of section

9 Xnum Integer*4 Entry number

10:... seciden(l:nsec) Integer*4 Section lengths (in words)

....... secleng(l:nsec) Integer*4 Section addresses (in words)
....9+3*nsec secaddr(l:nsec) Integer*4 Section numbers (identifiers)
...:94+3*msec (unused) Empty room for up to 'msec’ sections

Table 7: CLASSIC Data Container Version 1 limits.

Integer*4 provides (23! — 1 = 2147483647).

Most of them are the limit an IEEE Fortran

Parameter Limit Unit Comment

next 2147483647 records per file Maximum 1 TB for the whole file
lex 2147483647 entries per extension

nex 251 extensions per file

xnext 2147483647 entries per file

ex(:) 2147483647 record Absolute extension addresses in file
nbloc 2147483647 records per entry Maximum 1 TB for one observation
nword 2147483647 words per entry Maximum 8 GB for one observation
adata 2147483647 word Relative data address in the entry
ldata 2147483647 data values e.g. maximum number of channels
secaddr(:) | 2147483647 word Relative section address in the entry

e the limit on the file size. The more restrictive is the number of records per file: 2147483647 records

=1TB.

e the limit on the number of observations per file: at most 2147483647.

e the limit on the observation size, ceiled by the physical size of the data: 2147483647 words = 8 GB.

The Version 2 of the CLASSIC Data Container standard have addressed all these limitations, by turning
the corresponding parameters into Fortran Integer*8 values.

13

