

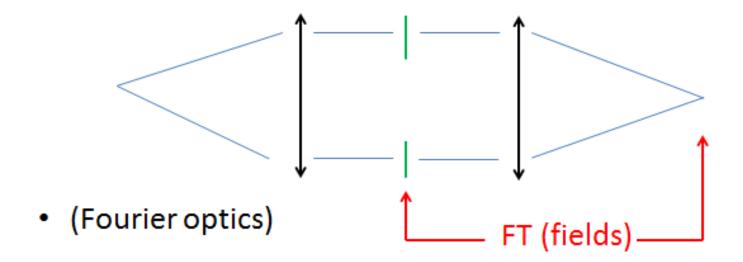
mm interferometers

Frédéric Gueth

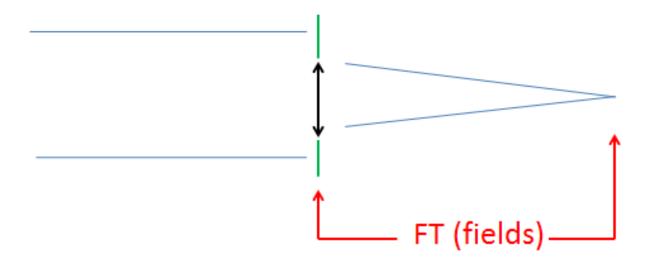
Millimeter interferometers Outline

- Image formation
 - → Fourier optics, van-Cittert- Zernike theorem
- The ideal interferometer
 - → geometrical delay, source size, bandwidth
- The real interferometer
 - → heterodyne receivers, delay tracking, correlators
- Aperture synthesis
 - \hookrightarrow uv plane, field of view

Fraunhofer diffraction



Astronomy case



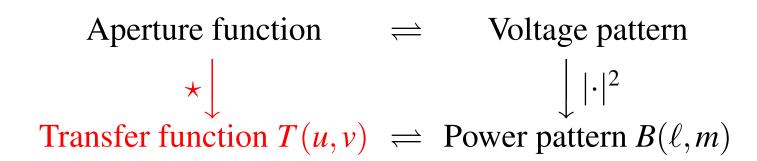
Fourier optics

Single-dish observations (point source)

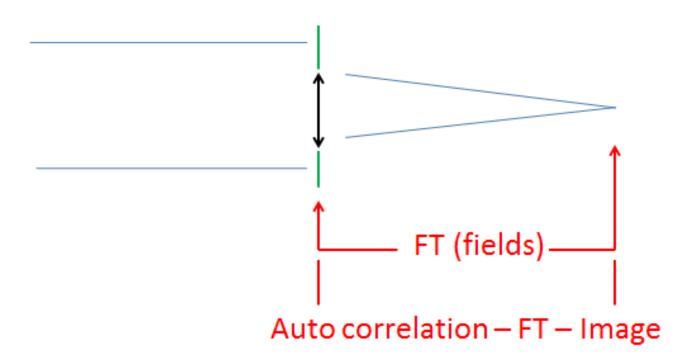
Aperture function \Rightarrow Voltage pattern $|\cdot|^2$ Power pattern $B(\ell, m)$ = Primary beam

Image formation Fourier optics

Single-dish observations (point source)



Transfer function describes how **spatial frequencies** are transmitted by the telescope; it is the **autocorrelation** of the aperture



Fourier optics

<u>Interferometers</u> (point source)

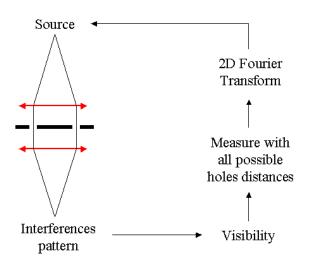
Aperture function
$$\Rightarrow$$
 Voltage pattern \star

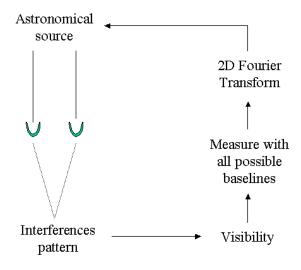
Transfer function $\mathbf{T}(\mathbf{u}, \mathbf{v}) \Rightarrow$ Power pattern $B(\ell, m)$

Aperture synthesis = sample directly the transfer function by mesuring the spatial correlation of the incident electric field

Fourier optics

How to measure the spatial correlation of the incident electric field? Young's hole!



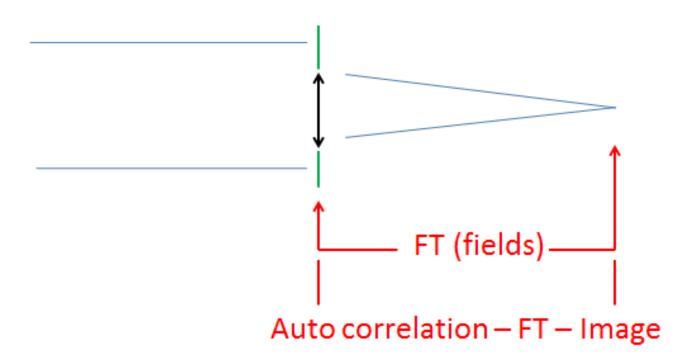


van Cittert-Zernike theorem

• Source at infinite distance; no spatial coherence; homogeneous medium between source and measure; measure in plane perp. to the line of sight

Spatial autocorrelation of measured field = FT(source brightness)

- $\langle E(x_1)E(x_2)\rangle \Longrightarrow S(\alpha)$
- $S(\alpha)$ = brightness distribution
- $\langle E(x_1)E(x_2) \rangle$ = spatial correlation of incoming field, depends only on $u = x_1 x_2$ = spatial frequency



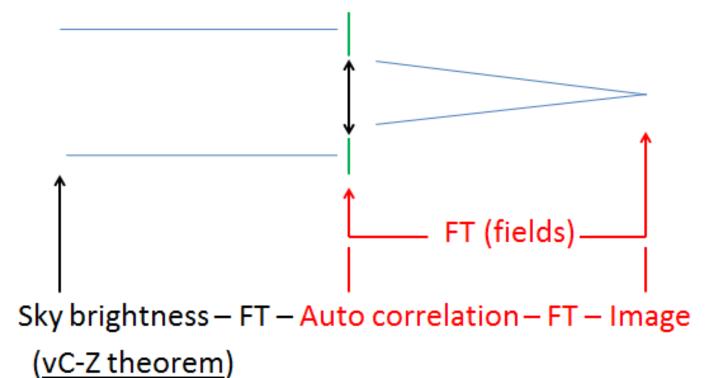


Image formation van Cittert–Zernike theorem

Implementing the van Cittert–Zernike theorem

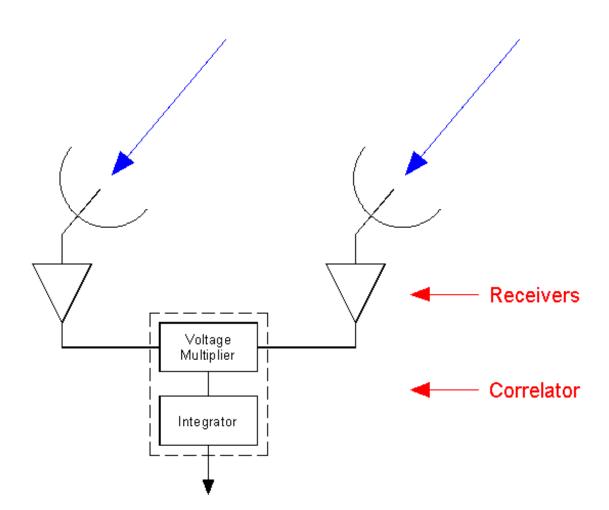
- 1. Build a device that measures the spatial autocorrelation of the incoming signal
- 2. Do it for all possible spatial frequencies
- 3. Take the FT and get an image of the brightness distribution

van Cittert-Zernike theorem

Implementing the van Cittert–Zernike theorem

- 1. Build a device that measures the spatial autocorrelation of the incoming signal → 2-elements interferometer
- 2. Do it for all possible spatial frequencies \longrightarrow N antennas
- 3. Take the FT and get an image of the brightness distribution software
- 4. Process the image because of incomplete uv coverage (2.)

Sketch



Measurements

- The heterodyne receiver measures the incoming electric field $E \cos(2\pi vt)$
- The <u>correlator</u> is a <u>multiplier</u> followed by a <u>time integrator</u>:

$$r = \langle E_1 \cos(2\pi vt) E_2 \cos(2\pi vt) \rangle = E_1 E_2$$

• We have measured the spatial correlation of the signal!

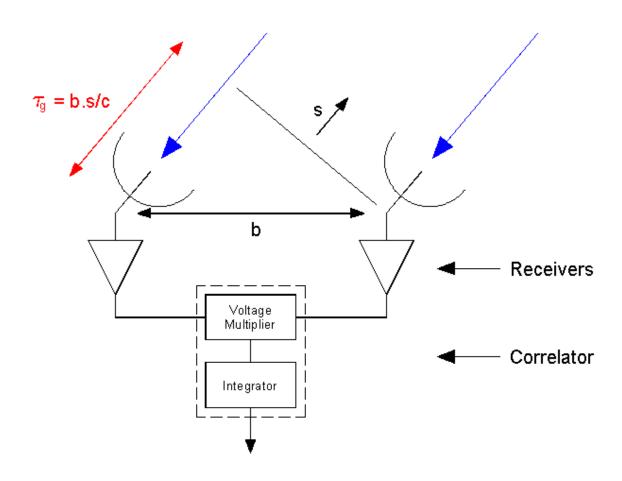
Measurements

- The heterodyne receiver measures the incoming electric field $E \cos(2\pi vt)$
- The <u>correlator</u> is a <u>multiplier</u> followed by a <u>time integrator</u>:

$$r = \langle E_1 \cos(2\pi vt) E_2 \cos(2\pi vt) \rangle = E_1 E_2$$

- We have measured the spatial correlation of the signal!
- But we have forgotten the geometrical delay

Sketch



Measurements

- There is a **geometrical delay** τ_g between the two antennas \longrightarrow **more complex** experiment than the Young's holes
- Correlator output:

$$r = \langle E_1 \cos(2\pi v t) E_2 \cos(2\pi v t) \rangle = E_1 E_2$$

 $r = \langle E_1 \cos(2\pi v (t - \tau_g)) E_2 \cos(2\pi v t) \rangle$
 $= E_1 E_2 \cos(2\pi v \tau_g)$

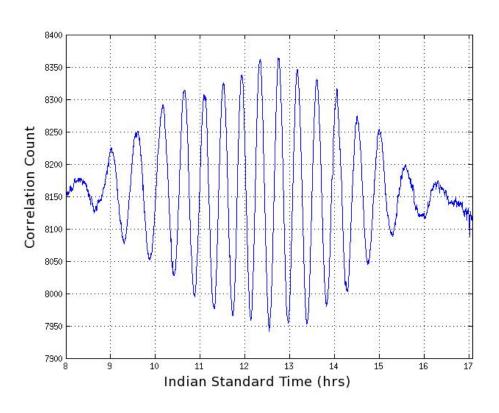
Measurements

- Correlator output: $r = E_1 E_2 \cos(2\pi v \tau_g)$
- τ_g varies slowly with time (Earth rotation) \longrightarrow **fringes**
- Natural fringe rate:

$$au_g = rac{\mathbf{b.s}}{c} \qquad v \, rac{d au_g}{dt} \simeq \Omega_{earth} \, rac{\mathbf{b} v}{c}$$

 $\sim 50 \text{ Hz for } b = 800 \text{ m and } v = 250 \text{ GHz}$

The ideal interferometer Measurements



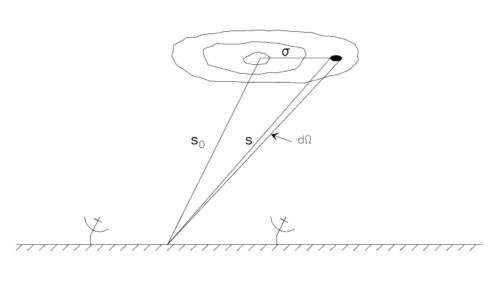
Measurements

- Correlator output: $r = E_1 E_2 \cos(2\pi v \tau_g)$
- τ_g varies slowly with time (Earth rotation) \longrightarrow **fringes**
- Are we done?

Measurements

- Correlator output: $r = E_1 E_2 \cos(2\pi v \tau_g)$
- τ_g varies slowly with time (Earth rotation) \longrightarrow fringes
- τ_g is **known** from the antenna position, source direction, time could be corrected
- Are we done?
- No... the source is **not a point source**

Source size



$$s = s_0 + \sigma$$

Power received from $d\Omega$:

$$A(\mathbf{s})I(\mathbf{s})d\Omega$$

$$A(s) = beam$$

$$I(s) =$$
source

Correlator output:
$$r = E_1 E_2 \cos(2\pi v \tau_g)$$

 $r = A(\mathbf{s})I(\mathbf{s})d\Omega\cos(2\pi v \tau_g(\mathbf{s}))$

Source size

• Correlator output integrated over source:

$$R = \int_{Sky} A(\mathbf{s})I(\mathbf{s})\cos(2\pi\nu\tau_g(\mathbf{s}))d\Omega$$
$$= |V|\cos(2\pi\nu\tau_g - \varphi_V)$$

Complex visibility:

$$V = |V|e^{ioldsymbol{\phi}_{
m V}} = \int_{Sky} A(oldsymbol{\sigma})I(oldsymbol{\sigma})e^{-2i\pi v {f b}.oldsymbol{\sigma}/c}d\Omega$$

Source size

$$R = \int_{Sky} A(\mathbf{s})I(\mathbf{s})\cos(2\pi v \mathbf{b}.\mathbf{s}/c) d\Omega$$

$$= \cos\left(2\pi v \frac{\mathbf{b}.\mathbf{s}_o}{c}\right) \int_{Sky} A(\sigma)I(\sigma)\cos(2\pi v \mathbf{b}.\sigma/c) d\Omega$$

$$- \sin\left(2\pi v \frac{\mathbf{b}.\mathbf{s}_o}{c}\right) \int_{Sky} A(\sigma)I(\sigma)\sin(2\pi v \mathbf{b}.\sigma/c) d\Omega$$

$$= \cos\left(2\pi v \frac{\mathbf{b}.\mathbf{s}_o}{c}\right) |V|\cos\varphi_{V} - \sin\left(2\pi v \frac{\mathbf{b}.\mathbf{s}_o}{c}\right) |V|\sin\varphi_{V}$$

$$= |V|\cos(2\pi v \tau_{g} - \varphi_{V})$$

The ideal interferometer Summary

• Correlator output:

$$r = \langle E_1 \cos(2\pi v t) E_2 \cos(2\pi v t) \rangle = E_1 E_2$$

 $r = E_1 E_2 \cos(2\pi v \tau_g) \qquad \longleftarrow \text{delay}$
 $R = |V| \cos(2\pi v \tau_g - \varphi_V) \qquad \longleftarrow \text{source size}$

• Complex visibility V resembles a Fourier Transform:

$$V = |V|e^{i\phi_{\rm V}} = \int_{Sky} A(\boldsymbol{\sigma})I(\boldsymbol{\sigma})e^{-2i\pi v \mathbf{b}.\boldsymbol{\sigma}/c}d\Omega$$

The ideal interferometer Summary

• Correlator output:

$$r = \langle E_1 \cos(2\pi v t) E_2 \cos(2\pi v t) \rangle = E_1 E_2$$

 $r = E_1 E_2 \cos(2\pi v \tau_g) \qquad \longleftarrow \text{delay}$
 $R = |V| \cos(2\pi v \tau_g - \varphi_V) \qquad \longleftarrow \text{source size}$

• 3D version of van Cittert–Zernike

- We do **not** measure r = FT(I)
- We measure R = something related to V, which resembles the FT(I)

The ideal interferometer Bandwidth

- Next problem: bandwidth (the source is not monochromatic)
- Integrating over a finite bandwidth Δv

$$R = \frac{1}{\Delta v} \int_{v_0 - \Delta v/2}^{v_0 + \Delta v/2} |V| \cos(2\pi v \tau_g - \varphi_V) dv$$
$$= |V| \cos(2\pi v_0 \tau_g - \varphi_V) \frac{\sin(\pi \Delta v \tau_g)}{\pi \Delta v \tau_g}$$

• The fringe visibility is attenuated by a sin(x)/x envelope (= bandwidth pattern) which falls off rapidly

The ideal interferometer Summary

• Correlator output:

$$r = \langle E_1 \cos(2\pi v t) E_2 \cos(2\pi v t) \rangle = E_1 E_2$$
 $r = E_1 E_2 \cos(2\pi v \tau_g) \qquad \longleftarrow \text{delay}$
 $R = |V| \cos(2\pi v \tau_g - \varphi_V) \qquad \longleftarrow \text{source size}$
 $R = |V| \cos(2\pi v_0 \tau_g - \varphi_V) \frac{\sin(\pi \Delta v \tau_g)}{\pi \Delta v \tau_g} \leftarrow \text{bandwidth}$

• We measure R, which is related to V, which resembles the FT(I). R strongly depends on τ_g .

The ideal interferometer Delay correction

$$R = |V|\cos(2\pi v_0 au_g - au_V) \, rac{\sin(\pi \Delta v au_g)}{\pi \Delta v au_g}$$

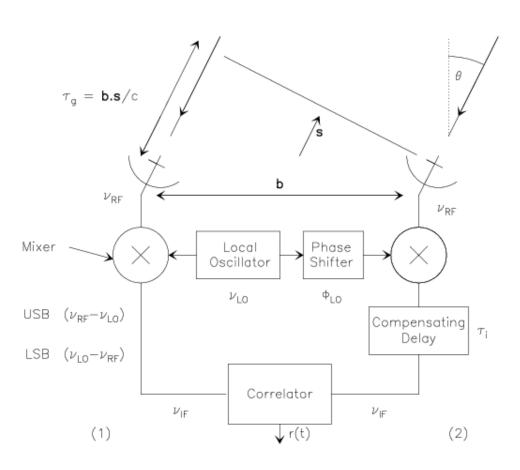
- τ_g varies with time because of the Earth rotation \longrightarrow rapid decrease of R (1% for a path length difference of \sim 2 cm and $\Delta v = 1 \text{GHz}$)
- Tracking a source requires the compensation of the geometrical delay
- Inteferometry requires temporal coherence!

The ideal interferometer Delay correction

$$R = |V|\cos(2\pi v_0 au_g - arphi_V) \, rac{\sin(\pi \Delta v \, au_g)}{\pi \Delta v \, au_g}$$

- Tracking a source requires the compensation of the geometrical delay
- This can be achieved by introducing an **instrumental delay** in the correlator
- If delay is compensated, we can measure $R = |V| \cos(\varphi_V)$

Sketch



Heterodyne detection

• In the receiver mixer, the incident electic field is combined with a local oscillator signal

$$U(t) = E \cos(2\pi v t + \varphi)$$
 $U_{\text{LO}}(t) = E_{\text{LO}} \cos(2\pi v_{\text{LO}} t + \varphi_{\text{LO}})$
 $v_{\text{LO}} \simeq v$

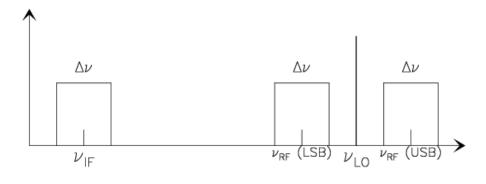
• to produce the intermediate frequencies

$$v_{\rm IF} - \Delta v / 2 \le |v - v_{\rm LO}| \le v_{\rm IF} + \Delta v / 2$$

Heterodyne detection

• The receiver output is

$$I(t) \propto E E_{\text{LO}} \cos \left(\pm \left(2\pi (\nu - \nu_{\text{LO}})t + \varphi - \varphi_{\text{LO}} \right) \right)$$

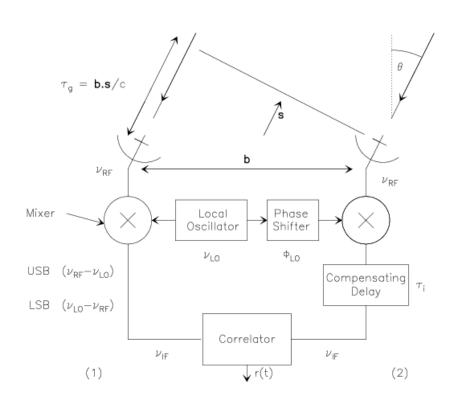


LSE

USI

PdBI: $v_{IF} = 4-8$ GHz, ALMA: 4-8 GHz, NOEMA: 4-12 GHz

Delay tracking



- A compensating delay is introduced in one of the branch of the interferometer, on the IF signal
- Equivalent to the delay lines in IR interferometers

Delay tracking

• Phases of the two signals (USB):

$$egin{aligned} oldsymbol{arphi}_1 &= 2\pi
u au_g &= 2\pi
u au_g &= 2\pi
u_{
m IF}
u_{
m g} &= 2\pi
u_{
m IF}
u_{
m iF$$

Correlator output:

$$R = |V|\cos(2\pi v \tau_g - \varphi_V)$$
 $R = |V|\cos(\varphi_1 - \varphi_2 - \varphi_V)$
 $R = |V|\cos(2\pi v_{LO}\tau_g - \varphi_V)$

Fringe Stopping

- Delay tracking not enough because applied on the IF
- Solution: in addition to delay tracking, rotate the phase of the local oscillator such that at any time:

$$\varphi_{\text{LO}}(t) = 2\pi v_{\text{LO}} \tau_g(t)$$

- τ_g is computed for a reference position = **phase center**
- Phase center = pointing center in practice, though not mandatory

Fringe stopping

• Phases of the two signals (USB):

$$egin{align} oldsymbol{arphi}_1 &= 2\pi
u au_g = 2\pi (
u_{ ext{LO}} +
u_{ ext{IF}}) au_g \ oldsymbol{arphi}_2 &= 2\pi
u_{ ext{IF}} au_i + oldsymbol{arphi}_{ ext{LO}} \ oldsymbol{arphi}_{ ext{LO}} &= 2\pi
u_{ ext{LO}} au_g \ \end{aligned}$$

Correlator output:

$$R = |V|\cos(\varphi_1 - \varphi_2 - \varphi_V)$$

$$R = |V|\cos(-\varphi_V)$$

Complex correlator

• After fringe stopping:

$$R = |V|\cos(-\varphi_{\rm V})$$

- The corrections were so good that there is **no time or delay dependance** any more \longrightarrow cannot measure |V| and φ_V separately.
- A second correlator is necessary, with one signal phase shifted by $\pi/2$: $R_i = |V|\sin(-\varphi_V)$
- The complex correlator measures directly the visibility

Complex correlator

- The correlator measures the real and imaginary parts of the visibility. Amplitude and phases are computed off-line.
- Amplitude and phases have more physical sense
 - Visibility amplitude = correlated flux
 - The atmosphere adds a **phase** to the incoming signals \longrightarrow measured phase = visibility + $\varphi_1 \varphi_2$

Scan Avg. Narrow Input 1

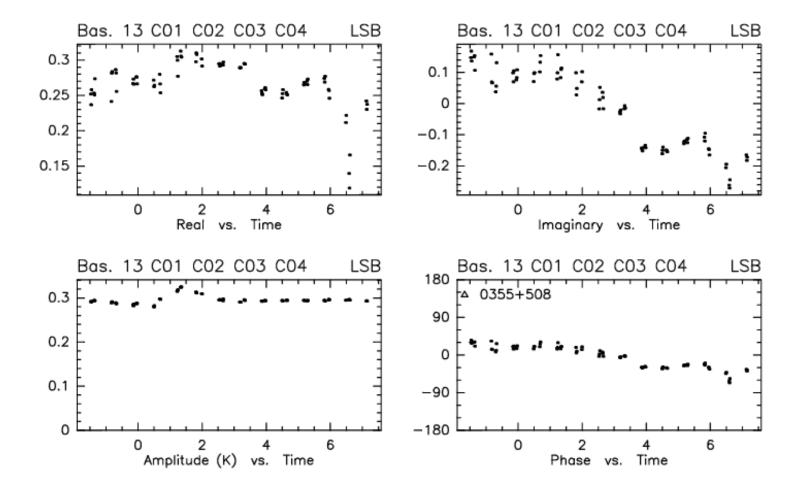


Image formation

van Cittert-Zernike theorem

Implementing the van Cittert–Zernike theorem

- 1. Build a device that measures the spatial autocorrelation of the incoming signal → 2-elements interferometer
- 2. Do it for all possible spatial frequencies \longrightarrow N antennas
- 3. Take the FT and get an image of the brightness distribution software
- 4. Process the image because of incomplete uv coverage (2.)

Complex visibility

• Complex visibility:

$$V = |V|e^{i\phi_{V}} = \int_{Sky} A(\sigma)I(\sigma)e^{-2i\pi v \mathbf{b}.\sigma/c}d\Omega$$

- Going from 3-D to 2-D? ...some algrebra...
- OK providing that:

(max. field of view)² × max. baseline
$$\ll 1$$

$$\Rightarrow \frac{(\text{max. field of view})^2}{\text{resolution}} \ll 1$$

Complex visibility

$$V(u,v) = \int_{Sky} A(\ell,m)I(\ell,m)e^{-2i\pi v(u\ell+vm)}d\Omega$$

- uv plane is perpendicular to the source direction, fixed wrt source back to van Cittert-Zernike theorem
- Price: limit on the field of view
- Approximation ok in (sub)mm domain, problem at wavelengths > cm, maybe with ALMA (long baselines, short frequencies)

Field of view

• Values for Plateau de Bure

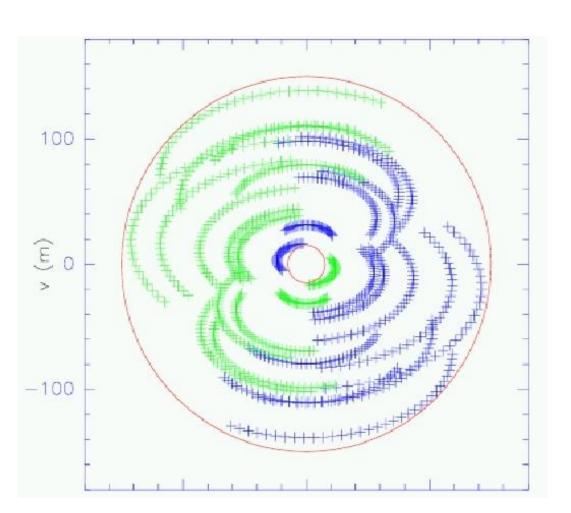
$oldsymbol{ heta}_{ m s}$	ν	2-D	0.5 GHz	1 Min	Primary
	(GHz)	Field	Bandwidth	Averaging	Beam
5"	80	5'	80"	2'	60"
2"	80	3.5'	30"	45"	60"
2"	230	3.5'	1.5'	45"	24"
0.5"	230	1.7'	22"	12"	24"

- Problem with 2D field: software; with bandwith: split the data for imaging; with time averaging: dump faster.
- Primary beam is the main limit on the FOV

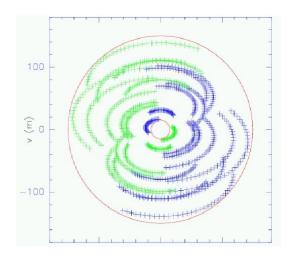
uv plane

- *uv* plane is perpendicular to the source direction, **fixed wrt** source
- (u, v) is the 2-antennas vector baseline projected on the plane perpendicular to the source
- \bullet (u, v) are spatial frequencies
- ... Earth rotation ... (spherical trigonometry) ...
- (u, v) describe an ellipse in the uv plane (for $\delta = 0$ deg, a line)

uv plane coverage



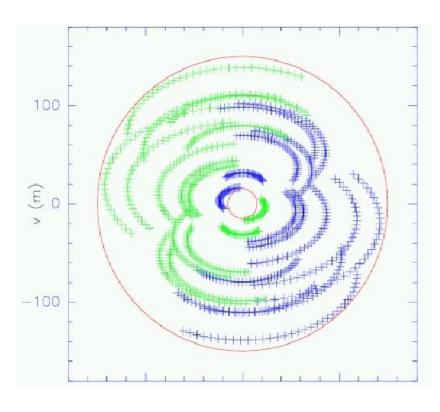
Aperture synthesis Image formation



Measurements = uv plane sampling \times visibilities After FT: dirty map = dirty beam * (prim. beam \times sky)

The FT of the *uv* plane coverage gives the dirty beam = the PSF of the observations

Aperture synthesis Image formation



Max. baseline gives the angular resolution

The real interferometer Spectroscopy

- van Cittert–Zernike theorem is in the **space** domain
- There is a similar theorem in the time domain: the Wiener-Kichnine theorem
 - temporal autocorrelation of S(t) = FT(spectra) $S(t_1)S(t_2) = \Sigma(\tau) \rightleftharpoons S(v)$
 - implementation: FT spectrometers

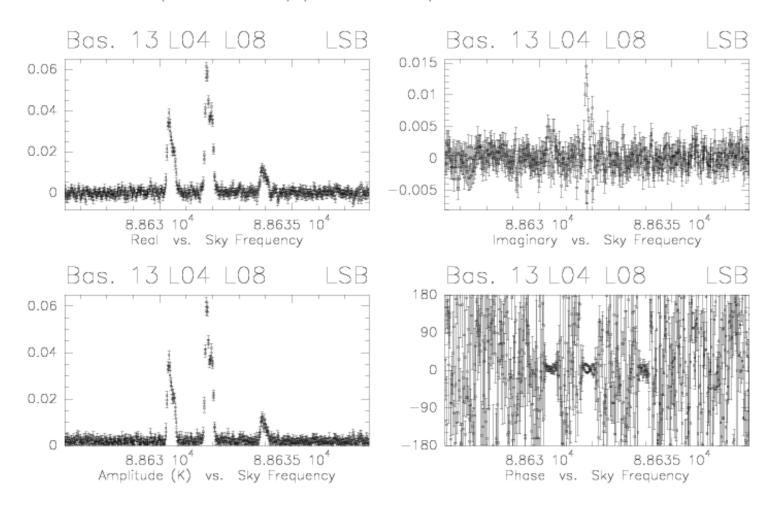
Spectroscopy

- Calculate the correlation between two antennas with a **delay** between the two signals
- Do it for several delays $\delta \tau$ measurement of the **temporal correlation** FT to get the spectra:

$$V(u, v, \mathbf{v}) = \int V(u, v, \tau) e^{-2i\pi\tau v} d\mathbf{v}$$

- This has nothing to do with geometrical delay compensation: $\delta \tau \sim 1/\delta v$ here
- Mixed up implementation in correlator software

R--9 HCN(1-0) 88.782GHz B1 Q3(320,320,320,20)V Q3(320,320,320,20)H (146 2909 O CORR)-(972 3556 O CORR) 26-OCT-2007 22:07-07:05



Summary Many other instrume

Many other instrumental issues

- ullet Phase lock systems to control $oldsymbol{arphi}_{ ext{LO}}$
- Real-time monitoring and correction of the phase offset in the cables or fibers
- Complex phase switching is used to cancel offsets, separate/reject side bands, ...
- Antenna position measurements, to get the delay, u, v
- Antenna deformations, e.g. thermal expansion (delay)
- Accurate focus measurements (delay)
- Atmospheric phase monitoring

• ...

