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Sensitivity

• Point source sensitivity
• Noise in images
• Brightness sensitivity

Low S/N analysis

• Continuum data
• Line data
• Examples
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• Noise on one visibility:
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• Noise is uncorrelated from one baseline to another
• There are N(N-1)/2 baselines for N antennas
• So the point source sensitivity (= average of all 

visibilities) is
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Noise in visibilities
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• Noise is uncorrelated from one baseline to another
• There are N(N-1)/2 baselines for N antennas
• So the point source sensitivity (= average of all 
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Noise in visibilities

Average of all 
visibilities to detect a 
point source

But we are doing a 
map, ie a (weighted) 
Fourier Transform…



• The Fourier Transform is a linear combination of the visibilities 
with some rotation (phase factor) applied. How do we derive the 
noise in the image from that on the visibilities ?

• Phase rotation?

– the correlator gives the same noise (variance) on the real and 

imaginary part of the complex visibility <εr
2> = <εi

2> 

– Real and Imaginary are uncorrelated <εrεi> = 0 

– so rotation (phase factor) has no effect on noise

Noise in images



• Noise can be estimated at the phase center

• In the imaging process, we combine (with some weights) the 
individual visibilities Vi. At the phase center:

I = ∑ wiVi / ∑ wi  

• This is a classical case of noise propagation. If natural weights
wi = 1/ σi

2 we have

1/σ2 = ∑ 1/σi
2 

• So the noise rms in the image is indeed given by:
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Noise in images



• Extended source sensitivity is defined in terms of brightness
temperatures = the (Rayleigh-Jeans) temperature of a source  filling
the beam and giving the same observed flux (Jy) 

• Beam is ���� (solid angle Ω)
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• So the brightness temperature rms is:
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Brightness sensitivity



• Brightness temperature
= temperature of a 
source filling the beam, 
and giving the observed
flux

• Beam x Temperature = flux

• The brightness temperature
depends on the beam size

Flux of extended weak
source = flux of compact 
bright source  

Brightness sensitivity



• The point-source sensitivity (Jy/beam) does not depend
on the angular resolution

• The brightness sensitivity (Kelvin) does depends on the 
angular resolution θ
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Brightness sensitivity



• The point-source sensitivity (Jy/beam) does not depend
on the angular resolution

• The brightness sensitivity (Kelvin) does depends
on the angular resolution �
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Brightness sensitivity



Brightness sensitivity

• The point-source sensitivity (Jy/beam) does not depend
on the angular resolution

• The brightness sensitivity (Kelvin) does depends
on the angular resolution �

THE BRIGHTNESS 
SENSITIVITY DEPENDS 

ON THE ANGULAR 
RESOLUTION!



The brightness sensitivity (Kelvin) does depends on 
the angular resolution �

Single-dish

Diameter x2

• Angular resolution x 2
• Collecting area x 4
• Point-source sens. x 4
• Brightness sens. =

Brightness sensitivity



The brightness sensitivity (Kelvin) does depends on 
the angular resolution �

Single-dish

Diameter x2

• Angular resolution x 2
• Collecting area x 4
• Point-source sens. x 4
• Brightness sens. =

Brightness sensitivity

Interferometer
Baseline x2

• Angular resolution x2
• Collecting area =
• Point source sens. =
• Brightness sens /4



The brightness sensitivity (Kelvin) does depends on 
the angular resolution �

Single-dish

Diameter x2

• Angular resolution x 2
• Collecting area x 4
• Point-source sens. x 4
• Brightness sens. =

Brightness sensitivity

Interferometer
Baseline x2

• Angular resolution x2
• Collecting area =
• Point source sens. =
• Brightness sens /4



Example 1:
• At 1’’ resolution, a source has been detected with 20 σ

in only 30 min, so it will be easy to map it at 0.1’’

Brightness sensitivity



Example 1:
• At 1’’ resolution, a source has been detected with 20 σ 

in only 30 min, so it will be easy to map it at 0.1’’
• Really?

– Increase resolution by 10 means reducing brightness
sensitivity by 100

Brightness sensitivity



Example 1:
• At 1’’ resolution, a source has been detected with 20 σ 

in only 30 min, so it will be easy to map it at 0.1’’
• Really?

– Increase resolution by 10 means reducing brightness
sensitivity by 100

– Need 10000 times more integration time to reach
same brightness sensitivity, i.e. 5000 hours ~ 7 
months, full-time

– Time ∝ 1/resolution4 for a given sensitivity…

– If we relax sensitivity by a factor 5 (4 σ detection), 
still need 400 times more integration time = 200 h

Brightness sensitivity



Example 2:
• ALMA accepts projects for a given angular resolution

(e.g. 1’’)
• But observes with 0.8’’

Brightness sensitivity



Example 2:
• ALMA accepts projects for a given angular resolution

(e.g. 1’’)
• But observes with 0.8’’
• Same brightness sensitivity? Integration time increased

by 2.4 (time ∝ 1/resolution4)
• Same integration time? Brightness rms increased by 1.5

Brightness sensitivity



Example 2:
• ALMA accepts projects for a given angular resolution

(e.g. 1’’)
• But observes with 0.8’’
• Same brightness sensitivity? Integration time increased

by 2.4 (time ∝ 1/resolution4)
• Same integration time? Brightness rms increased by 1.5

– Yes, but then, I can smooth the image, right?
– Yes, will get 1’’ resolution, but not the same

brightness rms (because smoothing = 
downweighting long baselines = reducing integration
time)

Brightness sensitivity



Conclusions: do not forget

• Planning observation often means compromizing
sensitivity/time/resolutions

• Mapping sources at (very) high angular resolution is
extremely time-consuming and reserved to very bright
sources
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Brightness sensitivity



• A nice case

• Observers advantage: don’t have to worry about 
bandpass & flux calibration…

• Theorists advantage: the data is always compatible 
with your favorite model

• A necessary challenge

• Want to push instrument to the limits
• So a careful analysis is necessary: when is a source 

detected? which parameters can be derived?

Low SNR detections



• Do not resolve it! Use UV_FIT (fit in the uv plane) with an 
appropriate source size

• Do you have some information on the absolute position? (optical, 
previous data, model,…)

< 1/10th of beam

• fix the position
• UV_FIT
• need > 3 σ to claim 

detection

Unknown

• make an image to locate
• use as starting point, but 

do not fix the position
• UV_FIT
• need 5 σ signal for 

detection

About the beam

• do not fix the 
position

• UV_FIT
• need > 4 σ for 

detection

Detection



SNR < 6 σ � cannot measure any source size

6 ¾

3¾

Source size



SNR < 6 σ � cannot measure any source size

• divide data in two subsets: shortest baselines on one side, 
longest on another

• each subset gets a 4.2 σ error on flux
• error on the difference is then just 3 σ
• so you cannot measure any difference and don’t know if the 

source is resolved or not

4.2¾4.2¾ 4.2¾

Need at least 3 ¾ on the 
difference

Source size



Example: HDF source (Downes et al. 1998)
7 σ detection of the strongest 
source in the Hubble Deep Field. 

Attempts to derive a size not 
succesfull. 
Can be unresolved, can be as large 
as the synthesized beam... 



• Line velocity unknown: observer will select the brightest part of the 
spectrum � bias

• Line width unknown: observer may limit the width to brightest part 
of the spectrum � another bias

• If position is unknown, it is determined from the integrated area map 
made from the tailored line window specified by the astronomer. This 
gives a biased total flux.

• Any speculated spatial extension will increase the total flux, by enlarging 
the selected image region (same effect as the tailored line window).

• Net result = 1 to 2 σ positive bias on integrated line flux.
• Things get really messy if a continuum is superposed to the weak line...

Lines: things get worse



Lines: things get worse



• Do not believe velocity gradient unless proven at a 6 σ 
level in each channel. Remember that position accuracy 
per channel is the beamwidth divided by the signal-to-
noise ratio...

• Do not believe source size unless S/N > 10 (or better)
• Expect line widths to be very inaccurate
• Expect integrated line intensity to be positively biased by 

1 to 2 σ
• Even more biased if source is extended

Weak line analysis



Examples are numerous, specially for high 
redshift CO, e.g. 53 W002 :

– OVRO (S. et al. 1997) claims an 
extended source, with velocity gradient. 
Yet the total line flux is 1.5 +- 0.2 
Jy.km/s i.e. (at best) only 7 σ .

– PdBI (A. et al. 2000) finds a line flux of 
1.20 +- 0.15 Jy.km/s, no source 
extension, no velocity gradient, 
different line width and redshift.

– Note that the line fluxes agree within 
the errors…

Example



Remark(s)

• But the images (contours) look convincing!
• Answer : beware of visually confusing 

contours which start at 2 σ (sometimes 
even 3) but are spaced by 1 σ

Example



Remark(s)

• But the images (contours) look convincing!
• Answer : beware of visually confusing 

contours which start at 2 σ (sometimes 
even 3)  but are spaced by 1 σ

• But the spectrum looks convincing, too !
• Answer : beware of  visually confusing 

spectra, which are oversampled by a factor 
2. The noise is then not independent 
between adjacent channels.

Example
Oversampled

Independent



• Contour map of dust emission at 1.3 mm, with 2 σ contours
• The inserts are redshifted CO(5-4) spectra
• A weak continuum (measured independently) exist on the Northern source
• The rightmost insert is a difference spectrum (with a scale factor applied, and 

continuum offset removed): No SIGNIFICANT PROFILE DIFFERENCE!

• i.e. no Velocity Gradient measured.



Perform a statistical analysis (e.g. χ2, or other statistical test) 
comparing model prediction to observations, i.e. visibilities

• Physical model of the source, with limited number of free 
parameters

• Predict visibilities 
• The GILDAS software offer tools to compute visibilities from 

an image / data cube (task UV_FMODEL)
• Beware of various subtle effect, eg primary beam, correlated 

(original) channels
• Appropriate statistical tests to constrain input parameters
• This can actually provide a better estimate of the noise level 

than the prediction given by the weights.

How to analyze weak lines?



A typical data cube showing 13CO emission in a protoplanetary disk. It has 
quite decent S/N, and one can recognize the rotation pattern of a 
Keplerian disk



Â2 analysis in the UV plane (5 disk parameters, for 8 disks)



A (really) low Signal to Noise image of the protoplanetary disk of DM Tau 
in the main group of hyperfine components of the N2H+ 1-0 transition.



Best fit integrated profile for the N2H+ 1-0 line, derived from a χ2 

analysis in the UV plane, using a line radiative transfer model for 
proto-planetary disks, assuming power law distributions, and taking 
into account the hyperfine structure (Dutrey et al. 2007).



• Maps of the integrated N2H+ 1-0 line emission, using the best 
profile derived from the Â2 analysis in the UV plane as a 
(velocity) smoothing kernel (optimal filtering).

• 7 σ detection for DM Tau, 6 σ detection for LkCa 15


