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Sensitivity
» Point source sensitivity
* Noise in images
» Brightness sensitivity

Low S/N analysis
e Continuum data
e Line data
e Examples



Noise in visibilities

* Noise on one visibility:
\/Zk Tsvs
nA VJAtAv

oS =

e Noise is uncorrelated from one baseline to another
 There are N(N-1)/2 baselines for N antennas

« So the point source sensitivity (= average of all
visibilities) is
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Noise in visibilities

* Noise on one visibility:

V2k T

05 = nA At Ay Average of all

visibilities to detect a

Noise is uncorrelated from one basel| point source

There are N(N-1)/2 baselines for N &

. So the point source sensitivity (4 But we are doing a
visibilities) is map, ie a (weighted)

Fourier Transform...
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Noise in iImages

e The Fourier Transform is a linear combination of the visibilities

with some rotation (phase factor) applied. How do we derive the
noise in the image from that on the visibilities ?

 Phase rotation?
— the correlator gives the same noise (variance) on the real and
imaginary part of the complex visibility <€r2> = <€i2>

— Real and Imaginary are uncorrelated <€.&> = 0
— so rotation (phase factor) has no effect on noise

!

gp = ERCos(@) — ersin( @)
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g1 = ersin(@) + ey cos( @)
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(eher) = (eR) cos(@) sin(@) — (3) cos(¢) sin(¢p) = 0
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« Noise can be estimated at the phase center

« In the imaging process, we combine (with some weights) the
individual visibilities V,. At the phase center:

[=2wV, /2w,

« This is a classical case of noise propagation. If natural weights
w; = 1/ 62 we have

1/02=).1/0*
e So the noise rms in the image is indeed given by:
2Kk T
N —

~ 1A /N(N-Dt_Av
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 Extended source sensitivity is defined in terms of brightness
temperatures = the (Rayleigh-Jeans) temperature of a source filling
the beam and giving the same observed flux (Jy)

« Beam s 0,0, (solid angle ()

RS S—}‘Z 4In(2)
- 2kQ 7| 2k me.e,

e So the brightness temperature rms is:

_2In(2)2* 1

0S
kn 0,0,
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* Brightness temperature
= temperature of a
source filling the beam,
and giving the observed
flux

 Beam x Temperature = flux

» The brightness temperature
depends on the beam size

Flux of extended weak
source = flux of compact
bright source




Brightness sensitivity

* The point-source sensitivity (Jy/beam) does not depend
on the angular resolution

e The brightness sensitivity (Kelvin) does depends on the
angular resolution 6
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Brightness sensitivity

* The point-source sensitivity (Jy/beam) does not depend
on the angular resolution

 The brightness sensitivity (Kelvin) does depends
on the angular resolution 6
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Brightness sensitivity

* The point-source sensitivity (Jy/beam) does not depend
on the angular resolution

 The brightness sensitivity (Kelvin) does depends
on the angular resolution 6

THE BRIGHTNESS
SENSITIVITY DEPENDS
ON THE ANGULAR
RESOLUTION!



Brightness sensitivity

The brightness sensitivity (Kelvin) does depends on
the angular resolution 6

Single-dish

Diameter x2

* Angular resolution x 2
e Collecting area x 4

* Point-source sens. x 4
e Brightness sens. =



Brightness sensitivity

The brightness sensitivity (Kelvin) does depends on
the angular resolution 6

Single-dish Interferometer
Diameter x2 Baseline x2
 Angular resolution x 2  Angular resolution x2
e Collecting area x 4 « Collecting area =

« Point-source sens. x 4 « Point source sens. =

e Brightness sens. =  Brightness sens /4



Brightness sensitivity

The brightness sensitivity (Kelvin) does depends on
the angular resolution 6

Single-dish Interferometer
Diameter x2 Baseline x2

« Angular resolution x 2 « Angular resolution x2
« Collecting area x 4 &_Collecting area = >

* Point-source sens. x 4 * Point source sens. =

e Brightness sens. =  Brightness sens /4



Brightness sensitivity

Example 1:

« At 1” resolution, a source has been detected with 20 o
in only 30 min, so it will be easy to map it at 0.1”




Brightness sensitivity

Example 1:

« At 1” resolution, a source has been detected with 20 o
in only 30 min, so it will be easy to map it at 0.1”

o Really?

— Increase resolution by 10 means reducing brightness
sensitivity by 100




Brightness sensitivity

Example 1:

« At 1” resolution, a source has been detected with 20 o
in only 30 min, so it will be easy to map it at 0.1”

Really?

— Increase resolution by 10 means reducing brightness
sensitivity by 100

— Need 10000 times more integration time to reach

same brightness sensitivity, i.e. 5000 hours ~ 7
months, full-time

— Time « 1/resolution* for a given sensitivity...

— If we relax sensitivity by a factor 5 (4 o detection),
still need 400 times more integration time = 200 h




Brightness sensitivity

Example 2:

« ALMA accepts projects for a given angular resolution
(e.g. 17)
e But observes with 0.8”




Brightness sensitivity

Example 2:

« ALMA accepts projects for a given angular resolution
(e.g. 17)
e But observes with 0.8”

e Same brightness sensitivity? Integration time increased
by 2.4 (time « 1/resolution*)

e Same integration time? Brightness rms increased by 1.5




Brightness sensitivity

Example 2:

ALMA accepts projects for a given angular resolution
(e.g. 17)
But observes with 0.8”

Same brightness sensitivity? Integration time increased
by 2.4 (time « 1/resolution*)

Same integration time? Brightness rms increased by 1.5
— Yes, but then, I can smooth the image, right?

— Yes, will get 1” resolution, but not the same
brightness rms (because smoothing =
downweighting long baselines = reducing integration
time)




Brightness sensitivity

Conclusions: do not forget

1
0%Vt . Av

0T X

« Planning observation often means compromizing
sensitivity/time/resolutions

* Mapping sources at (very) high angular resolution is
extremely time-consuming and reserved to very bright
sources



Low SNR detections

« A nice case

e Observers advantage: don’t have to worry about
bandpass & flux calibration...

« Theorists advantage: the data is always compatible
with your favorite model

* A necessary challenge
e Want to push instrument to the limits

e So a careful analysis is necessary: when is a source
detected? which parameters can be derived?



Detection

* Do not resolve it! Use UV_FIT (fit in the uv plane) with an
appropriate source size

« Do you have some information on the absolute position? (optical,

previous data, model,...) / \

< 1/10th of beam About the beam Unknown
o fix the position e do not fix the * make an image to locate
o UV_FIT position  use as starting point, but
e need >3 ctoclaim « UV FIT do not fix the position
detection e need >40 for <+ UV_FIT
detection  need 5 o signal for

detection
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SNR < 6 0 - cannot measure any source size

6o
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SNR < 6 0 - cannot measure any source size

» divide data in two subsets: shortest baselines on one side,

longest on another
» each subset gets a 4.2 o error on flux
 error on the difference is then just 3 o
e SO you cannot measure any difference and don't know if the

source is resolved or not

I ~SangSuntne LRy Ll — — ~Saagfunine RN LRSS
Bl 4.20 420 | E
<[ - Need at least 3 o on the

- i : difference

Radius in UV plane

Radius in UV plane
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Example: HDF source (Downes et al. 1998)

/ 0 detection of the strongest Attempts to derive a size not

source in the Hubble Deep Field. succesfull.
Can be unresolved, can be as large

as the synthesized beam...
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Lines: things get worse

mie

Line velocity unknown: observer will select the brightest part of the
spectrum =» bias

Line width unknown: observer may limit the width to brightest part
of the spectrum =» another bias

If position is unknown, it is determined from the integrated area map
made from the tailored line window specified by the astronomer. This
gives a biased total flux.

Any speculated spatial extension will increase the total flux, by enlarging
the selected image region (same effect as the tailored line window).

Net result = 1 to 2 o positive bias on integrated line flux.
Things get really messy if a continuum is superposed to the weak line...



Lines: things get worse

Jicakc = 5oa - doa
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Do not believe velocity gradient un
level in each channel. Remember t

Weak line analysis

ess proven ata 6 o
nat position accuracy

per channel is the beamwidth divic
noise ratio...

ed by the signal-to-

Do not believe source size unless S/N > 10 (or better)
Expect line widths to be very inaccurate
Expect integrated line intensity to be positively biased by

l1to20

Even more biased if source is extended
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Examples are numerous, specially for high
redshift CO, e.g. 53 W002 : |

— OVRO (S. et al. 1997) claims an
extended source, with velocity gradient.
Yet the total line flux is 1.5 +- 0.2
Jy.km/s i.e. (atbest)only 7 o .

53W002 Restframe Velocity (kms™)

500 0 =500
— PdBI (A. et al. 2000) finds a line flux of | A
1.20 +- 0.15 Jy.km/s, no source 82 |
extension, no velocity gradient, £

lu o]

different line width and redshift. : L T

— Note that the line fluxes agree within Loflj%
the errors... :

l L I ! |

101.8 102 1022
Observed Frequency (GHz)
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Remark(s)

« But the images (contours) look convincing!

* Answer : beware of visually confusing
contours which start at 2 o (sometimes
even 3) but are spacedby 1o

Frequency {GHz)

53W002 Restframe Velocity (km.s™)

e But the spectrum looks convincing, too ! N R I —
« Answer : beware of visually confusing {I”depe”de”}ﬁk
|

spectra, which are oversampled by a factor 3} | _
| ] .f
MR

2. The noise is then not independent
between adjacent channels.
R I | N | ; ;
101.8 102 102.2

Observed Frequency (GHz)

(&~
T

Flux Density {mJy)

£
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...............

e Contour map of dust emission at 1.3 mm, with 2 o contours
e The inserts are redshifted CO(5-4) spectra
* A weak continuum (measured independently) exist on the Northern source

e The rightmost insert is a difference spectrum (with a scale factor applied, and
continuum offset removed): No SIGNIFICANT PROFILE DIFFERENCE!

i.e. no Velocity Gradient measured.
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How to analyze weak lines?

Perform a statistical analysis (e.g. 2, or other statistical test)
comparing model prediction to observations, i.e. visibilities

» Physical model of the source, with limited number of free
parameters

Predict visibilities
o The GILDAS software offer tools to compute visibilities from
an image / data cube (task UV_FMODEL)

« Beware of various subtle effect, eg primary beam, correlated
(original) channels

» Appropriate statistical tests to constrain input parameters

e This can actually provide a better estimate of the noise level
than the prediction given by the weights.
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A typical data cube showing 13CO emission in a protoplanetary disk. It has
quite decent S/N, and one can recognize the rotation pattern of a
Keplerian disk
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x?2 analysis in the UV plane (5 disk parameters, for 8 disks)



n2h10 nocont.Imv—clean

Source: DM TAU

Line: N2H+(1-0)

Frequency: 93.173777 GHz

Beam: 7.03 x 4.62 PA 76°

Level step: 50 mJy/beam
0.22 K —— 3160

Box marking: VELOCITY

Channels: [0,0]

—0.05 0 0.05

A (really) low Signal to Noise image of the protoplanetary disk of DM Tau
in the main group of hyperfine components of the N,H* 1-0 transition.
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Best fit integrated profile for the N,H* 1-0 line, derived from a x?
analysis in the UV plane, using a line radiative transfer model for
proto-planetary disks, assuming power law distributions, and taking
into account the hyperfine structure (Dutrey et al. 2007).
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Maps of the integrated N,H* 1-0 line emission, using the best

profile derived from the A2 analysis in the UV plane as a

(velocity) smoothing kernel (optimal filtering).
7 o0 detection for DM Tau, 6 o detection for LkCa 15




