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Why?

  

  Need to go from Temperatures (K) to Fluxes (Jy):

            

                           S(Jy) = ηeff ×T(K)

(remember also talk by C.Kramer!)
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Antenna Efficiencies
Phase noise 
Decorrelation
Pointing/Focus

Why?

(remember also talk by M.Bremer!)



  

  Antenna Efficiencies:

  Mainly defined by Ruze formula, i.e., via antenna surface accuracy σ 
  (which can be measured with holographies, usually 30-40µm):

                               A
eff

  ~ exp(-(4πσ/λ)2)

Why?

(remember also talk by C. Kramer!)

TP measurements
on Mars and/or 
Saturn
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(remember also talk by C.Kramer!)

  

  Need to go from Temperatures (K) to Fluxes (Jy):

            

                           S(Jy) = ηeff ×T(K)

Antenna Efficiencies
Phase noise 
Decorrelation
Pointing/Focus

ηeff can vary from 
observation to 

observation
(also frequency
dependent)!!

Why?



  

  Need to go from Temperatures (K) to Fluxes (Jy):

            

                            S(Jy) = ηeff ×T(K)

Do an absolute Flux Calibration:

We measure T(K) and if we know S(Jy) on 
one source in the track, we can derive ηeff 
and apply it to all other sources!

-> Need an Absolute Flux calibrator!!!! 

Why?
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What do we want in a flux calibrator?

 preferentially well known properties 
  (such as flux SED, size if not pointlike)

 strong (>100mJy) emission at mm wavelengths

 compact (<< 1”) emission at mm wavelengths

 emission should not be variable in time

 preferentially with long LST range 
   (i.e., high declination source)

 no or only little sun-avoidance

Flux Calibrators
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4.) Radio Stars

Flux Calibrators



1.) Quasars

2.) Planets

3.) Solar Bodies 
     (Satellites, Asteroids, 
     Dwarf Planets)

4.) Radio Stars

Flux Calibrators



Flux Calibrators: Quasars



Flux Calibrators: Quasars

Not suitable!



1.) Quasars

2.) Planets

3.) Solar Bodies 
     (Satellites, Asteroids, 
     Dwarf Planets)

4.) Radio Stars
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• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
   2.) They start to be resolved (≥3”) already at 3mm
   3.) Some of them have broad molecular line absorption 
        (e.g., Mars, Jupiter, Saturn)
   4.) Not always visible, i.e., more constraints due to sun-
        avoidance, short LST ranges

Mars

Uranus

NeptuneSaturnJupiter

Flux Calibrators: Planets
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Flux Calibrators: Planets
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   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
   2.) They start to be resolved (≥3”) already at 3mm
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        (e.g., Mars, Jupiter, Saturn)
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Flux Calibrators: Planets

• Pro:
   most of the solar planets have strong mm-emission and 
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   2.) They start to be resolved (≥3”) already at 3mm
   3.) Some of them have broad molecular line absorption 
        (e.g., Mars, Jupiter, Saturn)
   4.) Not always visible, i.e., more constraints due to sun-
        avoidance, short LST ranges
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Flux Calibrators: Planets

• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
   2.) They start to be resolved (≥3”) already at 3mm
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8%6%

Kramer et al. (2008)
8.6GHz
90GHz

Uranus Neptune



Mars

Uranus

NeptuneSaturnJupiter

Flux Calibrators: Planets

• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
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Flux Calibrators: Planets

• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
   2.) They start to be resolved (≥3”) already at 3mm
   3.) Some of them have broad molecular line absorption 
        (e.g., Mars, Jupiter, Saturn)
   4.) Not always visible, i.e., more constraints due to sun-
        avoidance, short LST ranges

8%6%

Kramer et al. (2008)
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Flux Calibrators: Planets

• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
   2.) They start to be resolved (≥2”) already at 3mm
   3.) Some of them have broad molecular line absorption 
        (e.g., Mars, Jupiter, Saturn)
   4.) Not always visible, i.e., more constraints due to sun-
        avoidance, short LST ranges
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• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
   2.) They start to be resolved (≥3”) already at 3mm
   3.) Some of them have broad molecular line absorption 
        (e.g., Mars, Jupiter, Saturn)
   4.) Not always visible, i.e., more constraints due to sun-
        avoidance, short LST ranges
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Flux Calibrators: Planets

uv-radius
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• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
   2.) They start to be resolved (≥3”) already at 3mm
   3.) Some of them have broad molecular line absorption 
        (e.g., Mars, Jupiter, Saturn)
   4.) Not always visible, i.e., more constraints due to sun-
        avoidance, short LST ranges
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Flux Calibrators: Planets

• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
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   3.) Some of them have broad molecular line absorption 
        (e.g., Mars, Jupiter, Saturn)
   4.) Not always visible, i.e., more constraints due to sun-
        avoidance, short LST ranges
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• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
   2.) They start to be resolved (≥3”) already at 3mm
   3.) Some of them have broad molecular line absorption 
        (e.g., Mars, Jupiter, Saturn)
   4.) Not always visible, i.e., more constraints due to sun-
        avoidance, short LST ranges
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NeptuneSaturnJupiter

Flux Calibrators: Planets

Mars

Cavalie et al. (2009)

Marten et al. (2005)
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Flux Calibrators: Planets

• Pro:
   most of the solar planets have strong mm-emission and 
   reasonably well derived flux models 

• Contra: 
   1.) Fluxes not completely constant
   2.) They start to be resolved (≥2”) already at 3mm
   3.) Some of them have broad molecular line absorption 
        (e.g., Mars, Jupiter, Saturn)
   4.) Not always visible, i.e., more constraints due to sun-
        avoidance, short LST ranges
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1.) Quasars

2.) Planets

3.) Solar Bodies 
     (Satellites, Asteroids, 
     Dwarf Planets)

4.) Radio Stars

Flux Calibrators



Flux Calibrators: Satellites

• Pro:
   - They are quite compact (hence better 
     for extended configurations and/or higher 
     frequencies than planets) and still 
     sufficiently bright (>500mJy@3mm)

• Already regularly used at the SMA & ALMA: 
   Titan, Ganymede, Callisto

• Contra:
   - Titan also shows broad molecular lines
   - they are not always useable especially when 
      they are too close to their ‘mother’-planet 
      (or each other); one needs at least 3xPB 
   - flux models not as well constrained as for planets

Callisto

Ganymede

Titan
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Flux Calibrators: Asteroids/Dwarf Planets

Vesta

Ceres

Pallas

• Pro:
   - bright and relatively small solar bodies

• Contra:
   - Still uncertainties in their flux; some of 
     them known to vary quite significantly within a day
   - irregular shapes



Flux Calibrators: Asteroids/Dwarf Planets

• Pro:
   - bright and relatively small solar bodies

• Contra:
   - Still uncertainties in their flux; some of 
     them known to vary quite significantly within a day
   - irregular shapes

Vesta

Ceres

Pallas
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2.) Planets

3.) Solar Bodies 
     (Satellites, Asteroids, 
     Dwarf Planets)

4.) Radio Stars
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Flux Calibrators: Radio Stars

Radio bright stars:
• MWC349 (binary star)
• CRL618 (PPN)
• W3OH (HII region)
• NGC7072 (young PN)
• NGC7538 (HII region)
• K3-50A (HII-region)
• …..
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Flux Calibrators: Radio Stars

Number of radio bright stars:
• MWC349
• CRL618
• W3OH
• NGC7072
• NGC7538
• K3-50A

CRL618

Pardo et al. (2009) 



Flux Calibrators: Radio Stars

Number of radio bright stars:
• MWC349
• CRL618
• W3OH
• NGC7072
• NGC7538
• K3-50A

CRL618

Pardo et al. (2009) 

Too many lines!



Flux Calibrators: Radio Stars

Number of radio bright stars:
• MWC349
• CRL618
• W3OH
• NGC7072
• NGC7538
• K3-50A
• …..

Nakashima et al. (2010)

NGC7027



Flux Calibrators: Radio Stars

Number of radio bright stars:
• MWC349
• CRL618
• W3OH
• NGC7072
• NGC7538
• K3-50A
• …..

Nakashima et al. (2010)

NGC7027

Too extended!



Flux Calibrators: Radio Stars

Radio bright stars:
• MWC349
• CRL618
• W3OH
• NGC7072
• NGC7538
• K3-50A



Flux Calibrators: MWC349

Some facts:

• binary stellar system: 
   MWC349A (Be) & MWC349B (B0 type III)
• the two stars are separated by 2.4”±0.1” and
   possibly interact
• MWC349A the brightest radio continuum star
• radio continuum produced by “ionised bipolar 
   flow that photoevaporates from the surface 
   of a neutral Keplerian disk”
• size of flow decreases with frequency 
• strong but highly variable hydrogen maser 
   emission (RRLs) from the near-edge-on disk 
   (~0.065”=80AU@1.2kpc)
• at declination of >40deg
   -> visible for ~13h per 
   day

Tafoya et al. (2004)

grey scale – 1.3cm
contours   –  7 mm

Thum et al. (1995)Martin-Pintado et al. (1994)
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Flux Calibrators: MWC349

Weintroub et al. (2008)



Some facts:

• binary stellar system: 
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Flux Calibrators: Radio Stars

Reference radio bright stars:
• MWC349  

• Since ~ 2013 we also use 
LkHa101

• LkHa101 covers the 
complementary observable 
LST 

• 24h LST coverage with FLUX 
reference



How to calibrate a calibrator?
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Flux of MWC349: SED



Flux of LkHa101: SED



Size of MWC349
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Flux of MWC349 & LkHa101: Variability
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Flux of MWC349 & LkHa101: Variability
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Practical Tips

Flux 
reference

Steps in flux calibration:

1)Fix the flux (Jy) of the reference calibrator
2)Estimate K/Jy factor (antenna efficiency)
3)Derive flux for other calibrators

Final representation = normalized amplitudes = 
antenna efficiencies  (Jy/K or K/Jy)



Practical Tips
Visual Output from FLUX calibration

• We derive the FLUX for each 
source

• Here normalized amplitudes 
= K/Jy = characteristic of 
each antenna (or antenna 
performance)
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ignore that



Practical Tips

• We derive the FLUX for each 
source

• Here normalized amplitudes 
= K/Jy = characteristic of 
each antenna (or antenna  
performance)

• If at some moment the 
performance/data are BAD 
and not representaive – 
ignore that

Visual Output from FLUX calibration



Practical Tips

Checklist:
• Antenna Shadowing
• Pointing/Focus Problems
• Tracking Problems
• Noisy data
• Has Flux Calibrator Lines?
• Is Flux Calibrator Extended?
• Check Elevation of your source
• Check whether source is polarised

(only important when using one polarisation)
• Do phases of different spectral windows 

overlap?

Which are the issues to consider?



Practical Tips: Shadowing
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Practical Tips

Checklist:
• Antenna Shadowing
• Pointing/Focus Problems
• Tracking Problems
• Noisy data
• Has Flux Calibrator Lines?
• Is Flux Calibrator Extended?
• Check Elevation of your source
• Check whether source is polarised

(only important when using one polarisation)
• Do phases of different spectral windows 

overlap?

Which are the issues to consider?
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Practical Tips: CLIC software tools

Takes out known lines on 
LkHa101 and MWC349
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Practical Tips: CLIC software tools

1.) Choice of flux calibrator !!

Default references: 
MWC349 & LKHa101
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Practical Tips: CLIC software tools

1.) Choice of flux calibrator !!
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Practical Tips: CLIC software tools

1.) Choice of flux calibrator !!

Default references: 
MWC349 & LKHa101

• Be critical, to  understand why 
MWC349 is not used : e.g. briefly 
degraded conditions, perhaps due 
to source elevation or changing 
weather, which is not  
representative of the track.  

• If the conditions are  
representative of the track, 
MWC349 should be used

• Other sources can be used otherwise as reference: in 
this case flux monitorings,  plus information coming 
from additional tracks should be considered

• Our knowledge about antenna efficiencies should also 
be used (SOG will support you)
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Limit scan range by hand!
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Accounts for source size!

MWC349 and LkHa101 extended 
(depending on frequency 

and configuration)
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Practical Tips: CLIC software tools

If we adopt wrong fluxes

Wrong Antenna Efficiencies
and sources not aligned 

on plot!



Questions?
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