Introduction to mm-radioastronomy IRAM mm-school 2018 Roberto Neri, IRAM

Literature

Tools of Radio Astronomy

Fifth Edition

Copyrighted Material Saas-Fee Advanced Course 21

Lecture Notes 1991 Swiss Society for Astrophysics and Astronomy

W.B. Burton B.G. Elmegreen R. Genzel The Galactic Interstellar Medium

Springer-Verlag

Springer-veriag

- H.Hertz (1888)
 - Hertz oscillator : first radio wave transmitter
 - existence of electromagnetic waves
 - confirms Maxwell's theory
- G.Marconi (1901)
 - first transatlantic radio communication @ 820 KHz
- K.Jansky (1932)
 - azimuth rotating antenna @20.5 MHz
 - discovery of cosmic radio emission (GC)
 - $1 Jy = 10^{-26} W.m^{-2}.Hz^{-1}$

- K.Jansky (1932)
 - azimuth rotating antenna @20.5 MHz
 - discovery of cosmic radio emission (GC)
 - $-1 Jy = 10^{-26} W.m^{-2}.Hz^{-1}$

Historical Overview

- G.Reber (1938)
 - first parabolic radio dish @ 160 MHz (=1.8 m)
 - confirms Jansky's discovery
 - first radio survey

• G.Reber (1944, ApJ, 100, 279)

- G.Reber (1944, ApJ, 100, 279)
 - first parabolic radio dish @ 160 MHz (=1.8 m)
 - confirms Jansky's discovery
 - first radio survey no detection @ 900 and 3300 MHz
- A.Penzias and R.Wilson (1965, ApJ, 142, 419)
 - discovery of the CMB @ 41 GHz

- H I @ 21 cm : Ewen & Purcell 1951 ; Oort & Muller 1951
- OH @18 cm: Weinreb et al. 1963
- 1st polyatomic molecule in 1968: NH₃ (Cheung et al.)
- H2O @ 1.4 cm (22 GHz) : Cheung et al. 1969
- start of UV astronomy: H₂ in 1970
- 1970: CO by Wilson et al.
- many more molecules, more and more complex (e.g. C₂H₅COOH), and more and more long

Historical Overview : detected molecules

Historical Overview : some (sub)mm-Telescopes

- 1964: Haystack 37-m tel. (λ>6mm)
- 1965: Green Bank 140ft telescope (λ >6mm)
- 1969: Kitt Peak 36'/12m telescope (λ >1mm)
- 1970: Effelsberg 100m telescope (λ >3mm)
- 1982: Nobeyama 45m telescope (λ >2mm)
- 1984: IRAM 30m telescope (λ >0.8mm)
- 1988: CSO 10.4m telescope (λ>0.3mm)
- 1990: IRAM Plateau de Bure Interferometer (λ >0.8mm)
- 2000: GBT 105m telescope (λ>3mm)
- 2004: APEX (λ>0.3mm)
- 2006: LMT (λ>0.8mm)
- 2012: ALMA (λ>0.1mm)
- 2014: NOEMA (λ>0.8mm)

Historical Overview : detected molecules

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms	
H ₂	C3*	c-C ₃ H	C5*	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH ₃ C ₅ N	HC ₉ N	C ₆ H ₆ *	HC11N	
AIF	C ₂ H	I-C ₃ H	C₄H	I-H ₂ C ₄	CH ₂ CHCN	HC(0)OCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	CH ₃ C ₆ H	C ₂ H ₅ OCH ₃ ?	C ₅₀ * 2010	
AICI	C ₂ O	C ₃ N	C ₄ Si	C2H4*	CH ₃ C ₂ H	CH ₃ COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂	C ₂ H ₅ OCHO	n-C ₃ H ₇ CN	C70*	
C2**	C ₂ S	C ₃ O	I-C ₃ H ₂	CH ₃ CN	HC₅N	C ₇ H	CH ₃ CH ₂ OH	CH ₃ CH ₂ CHO			2010	
н	CH ₂	C ₃ S	c-C ₃ H ₂	CH ₃ NC	CH ₃ CHO	H ₂ C ₆			_		-	
Сн⁺	HCN	C ₂ H ₂ *	H ₂ CCN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO				Mole	cules	in the ISM
CN	HCO	NH ₃	CH4*	CH ₃ SH	c-C ₂ H ₄ O	I-HC6H*						
со	HCO ⁺	HCCN	HC ₃ N	HC ₃ NH ⁺	H ₂ CCHOH	CH ₂ CHCHO (?)						
60	HCS ⁺	HCNH ⁺	HC ₂ NC	HC ₂ CHO	C ₆ H ⁻	CH ₂ CCHCN	Colog	no Doto	Pace f	or Molo		ctroccopy (CDMC)
CP	HOC*	HNCO	HCOOH	NH ₂ CHO		H ₂ NCH ₂ CN	Cologi	ne Dala	Dase I		culai Spe	
SiC	H ₂ O	HNCS	H ₂ CNH	C ₅ N					6		h a la consida o	
HCI	H ₂ S	HOCO ⁺	H_2C_2O	I-HC ₄ H*			-		by far ti	ne most	c abundar	nt but invisible @ mm-waves
KCI	HNC	H ₂ CO	H ₂ NCN	I-HC ₄ N			-	CO is	visible	in almo	st all mm	i-windows
NH	HNO	H ₂ CN	HNC ₃	c-H ₂ C ₃ O			-	more	than 20	00 mole	cules	
NO	MgCN	H ₂ CS	SiH4*	H ₂ CCNH (?))		-	observ	/ations	, labora	tory, theo	ory
NS	MgNC	H ₃ O ⁺	H ₂ COH ⁺	C ₅ N ⁻			-	organi	ic chem	าistry bเ	ut also sp	ecies with S,P,F,Cl,Fe,Si,
NaCI	N ₂ H ⁺	c-SiC ₃	C ₄ H ⁻				_	manv	cations	G (HCO+	, H ₂ O ⁺ ,) and few anions (CN^{-})
OH	N ₂ O	CH ₃ *	HC(O)CN					many	radical	s: CH. (Ĺ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	HCO, CN,
PN	NaCN	C ₃ N ⁻						,				
SO	OCS	PH ₃ ?										
SO*	SO ₂	HCNO										
SiN	c-SiC ₂	HOCN 2010										
SiO	CO ₂ *	HSCN										
SiS	NH ₂	H ₂ O ₂ 2011	E+L	nul for	moto	СЦС		`				
CS	H3**		EU	iyi-i0i	mate	$C_2 \Pi_5 C$)				
HF	H ₂ D ⁺ , HD ₂ ⁺											
2010 HD	SICN											
FeO ?	AINC			T								
O ₂	SINC											
2011	LICD											
SiH 2	CCP											
000	AIOH											
PO	2010											
AIO	H ₂ O ⁺ 2010		(В	elloch	e et a	1. 2009	with	the 30	m)			
OH ⁺ 2010	H ₂ CI ⁺											
CN-	KCN											
2010 SH ⁺	2010 FeCN											
2011	2011											

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	>8 atoms
ОН	H ₂ O	H ₂ CO	c-C ₃ H ₂	CH ₃ OH	CH ₃ CCH		
со	HCN	NH ₃	HC ₃ N 2010	CH ₃ CN			C ₆₀ * 2010
H ₂ *	HCO ⁺	HNCO	CH ₂ NH				
CH **	C ₂ H	H ₂ CS?	NH ₂ CN				
CS	HNC	HOCO ⁺					
CH ⁺ **	N_2H^+	c-C₃H					
CN	OCS	H ₃ O ⁺					
SO	HCO						
SiO	H ₂ S						
CO ⁺	SO ₂						
NO	HOC ⁺						
NS	C ₂ S						
NH	H ₂ O ⁺ 2010						
OH ⁺ 2010							
HF 2010							

Energies involved in molecular states

- electronic transitions
- vibrational transitions
- rotational transitions

- translational transitions
 → →
- electronic/nuclear spin transitions

Energies involved in molecular states

- electronic transitions
- vibrational transitions
- rotational transitions
- translational transitions

Low-energy rotational transitions of small molecules lie at mm wavelengths

- visible = hot matter = stars/HII between 10³ and 10⁵ K
- millimeter = cold matter = dust/molecules between 10 and 100 K

stars are born in cold matter

hv = kT 4.3 K = 90 GHz = 3 cm⁻¹

- mm-astronomy deals with
 - continuum emission: free-free, dust, synchrotron, compton scattering, SZ, ...
 - line emission: mostly molecules but also atoms
 - inter- stellar/galactic medium in various phases
 - matter in ionized, atomic, molecular state, dust grains, etc.
 - temperature, density of the matter

- > HII regions T~ 10^4 K, n= 10^1 - 10^6 /cm³ e.g. H, He
- > molecular clouds/cores T~10-10³K, n~10²-10⁸/cm³ e.g. 12 CO

(sub)mm-telescopes

 need for powerful instruments to observe astronomical targets up to the EoR (z=8)

sensitivity and angular resolution

☐ large telescopes e.g. ALMA, NOEMA/IRAM 30m

- \implies continuum and heterodyne receivers $R = 10^7 10^8$
- water vapor reduces the ability to observe in the mm-range from the ground

 \implies high altitude sites i.e. above 2000m

advantages of interferometers

- high angular resolution
 - @ 230 GHz: 0.4" with NOEMA10 > 0.2" with NOEMA12
 - ➤ @ 350 GHz ~20 uas with VLBI (planned)
- large collective area
 - > NOEMA12 = 50-meter antenna; ALMA45 = 80-meter antenna
- > no need of reference sky position (gain of a factor $\sqrt{2}$ in sensitivity)
- flatter baselines, depend less on receiver/atmosphere stability
- > well suited for special observations e.g. polarimetry, SZ
- accurate source positions
- filter out extended (foreground/background) emission

Telescope	Altitude	Frequencies		
EFFELSBERG 100m	320	<90 GHz		
ATCA	240	<105 GHz		
GBT	320	<115 GHz		
NOEMA/IRAM 30M	2500/2800	< 380 GHz		
SMA 8	4030	<700 GHz		
LMT	4600	<350 GHz		
ALMA 50	5000	<1000 GHz		

some statistics (Cy5 vs NOEMA 2017)

mm-astronomy ...

... not anymore in a proof-of-concept stage

... belongs to mainstream science

Ethyl alcohol and sugar in comet Lovejoy (C/2014 Q2)

- EMIR campaign
- survey @ 210-272 GHz
- > C_2H_5OH , $CH_2OHCHO + 19$ other molecules
- COMs abundance > solar-type protostars
 origin of COMs

Ethyl alcohol and sugar in comet Lovejoy (C/2014 Q2)

Filamentary structures in NGC 2024 - Jan Orkisz et al. in prep First light with NOEMA 10 antennas + IRAM 30-meter telescope

Search for NH₂CHO

A disk around a Herbig AeBe star, 2mm continuum, 8 Ants, *Fuente et al 2017*

protostellar outflow Cepheus E

star formation in afgl2591

CORE: High-mass star formation – Beuther et al. ABD configuration @ 220 GHz

1.3mm continuum data, ~0.4" resolution

Galactic star formation: Key questions

- Origin of the stellar initial mass function (IMF)?
- How is it related to the mass function of the cloud cores (CMF)?
- Generation of the prestellar cores & initiation of protostellar collapse
- Is there a threshold for star formation?
- Clustered vs. isolated mode of star formation
- Triggered vs spontaneous star formation
- A galaxy scale predictive model of star formation is still lacking
- Factors controlling the star formation efficiency (SFE) in GMCs ? Variation of SFE and the SFR as a function of the galactocentric distance, ISRF, metallicity etc.

Recycling of gas and dust

Mass-loss of massive stars during the last stages of stellar evolution. Example: IRC+10216

200

Expelled circular dust shell during the last 8000 years. Optical image. Expansion velocity ~15 km/s, One expulsion every ~800 years

Expulsion of CO shells Cernicharo et al. 2014

 $100 \\ 0 \\ -100 \\ 200 \\ 100 \\ 0 \\ -200 \\ 200 \\ 100 \\ 0 \\ -100 \\ -100 \\ -200 \\ 200 \\ -200 \\ 200 \\ -2$

High dynamic range imaging (NOEMA)

self-calibrated continuum map @ 1mm
dynamic range 1000:1

Extreme star formation region in the 'Eye of Medusa'

- high density tracers = HCN, HCO⁺
- Eye is not detected in ¹²CO!
 - Iow CO/HCN (1–0) luminosity ratio
 - SFE is similar to other regions
 - SF or feedback of SF regions?

Koenig et al 2018

Molecular clouds in IC342 PI A.Schruba (MPE)

- \blacktriangleright D = 3.3 Mpc, M(gas) = 10¹⁰ M_☉, SFR = 1.9 M_☉/yr
- NOEMA + IRAM 30m cover 70% of the SF disk
- NOEMA = 1250-field mosaic, 60 pc resolution = 3.8"
- ➤ 1500 molecular clouds with S/N > 5

Plateau de Bure Arcsecond Whirlpool Survey (PAWS)

¹²CO(1-0) @115 GHz
 resolution ~1" ~40pc

Schinnerer et al. 2013 Pety et al. 2013 Meidt et al. 2013 Hughes et al. 2013

CO-kinematic mass estimate for the over-massive black hole in NGC 1277

possibly ~100 times the typical $M_{BH}/M_{bulge}!$

(Scharwächter, Combes, Salomé, Sun & Krips, 2015, arXiv:1507.02292)

PHIBSS Cosmology Large Program 7/8 Ants

redshift

wide-band spectroscopy with PolyFiX

- 7.2 hr on-source with nine antennas, two frequency setups
- continuum detected with a dynamic range 200:1
- detection of several transitions allows to determine the redshift

HLS J091828+5414223 (z = 5.2)

Herrera et al. in prep

Galactic hailstorm in the early Universe (J1148+5251 @ z=6.4)

The most distant quasar with confirmed redshift (z=7.54) 8 Ants

Thank you for your attention.