

Imaging & Deconvolution: II. Mosaicking

> Jérôme PETY IRAM & Obs. de Paris

10th IRAM Millimeter Interferometry School Oct. 1-5 2018, Grenoble

Towards Higher Resolution: Limited Instantaneous Field of View

Measurement equation $I_{\text{meas}} = D \star (B_{\text{prim}}.I_{\text{source}}) + N.$

One pixel detector

- Single Dish: one image pixel/telescope pointing;
- Interferometer: numerous image pixels/telescope pointing
 - Field of view = Primary beam size;
 - Image resolution = Synthesized beam size.

Wide-field imaging \Rightarrow mosaicking.

Observing setup: I. Interferometry

- Stop-and-go mosaicking setup:
 - Loop around field positions \Rightarrow similar *uv* coverage per field;
 - Contiguous time per field: Compromise between
 - * Need of consistency between fields;
 - * Minimization of dead times due to acceleration/deceleration.

- Example (setup during 8 hours)
 - 7 fields observed 3 minutes per fields in each loop;
 - Calibrator observed every 21 minutes;
 - Pointing and focus checked every hour.

Imaging & Deconvolution: II. Mosaicking

Imaging: Dirty beams

One dirty beam per field (directly the final image size): I_i = D_i * (B_i.I_{source}) + N_i.

Imaging & Deconvolution: II. Mosaicking

Imaging: Dirty image and noise

- One dirty image per field (directly the final image size): $I_i = D_i \star (B_i \cdot I_{\text{source}}) + N_i$.
- Linear combination (optimal from signal-to-noise ratio point of view):

- Signal:

$$S(\alpha,\beta) = rac{\sum_{i} rac{B_{i}(\alpha,\beta)}{\sigma_{i}^{2}} I_{i}(\alpha,\beta)}{\sum_{i} rac{B_{i}^{2}(\alpha,\beta)}{\sigma_{i}^{2}}};$$

- Noise: $N(lpha,eta) = 1 \left/ \sqrt{\sum_i rac{B_i^2(lpha,eta)}{\sigma_i^2}}
ight;$

- Signal-to-Noise Ratio: $SNR(\alpha,\beta) = \frac{S(\alpha,\beta)}{N(\alpha,\beta)}.$

Imaging & Deconvolution: II. Mosaicking

Deconvolution: I. Theory

- Same as single field except:
 - The CLEAN components are searched on the SNR map;
 - The residual and SNR maps are iterated as:

*
$$S_k(\alpha, \beta) = S_{k-1}(\alpha, \beta) - \frac{\sum_i \frac{B_i(\alpha, \beta)}{\sigma_i^2} \gamma I_k}{\sum_i \frac{B_i^2(\alpha, \beta)}{\sigma_i^2}}$$

with $I_k = B_i \star \{B_i(\alpha_k, \beta_k).I_k.\delta(\alpha_k, \beta_k)\}$ and $\gamma \sim 0.2$;
* $SNR(\alpha, \beta) = \frac{S_k(\alpha, \beta)}{N(\alpha, \beta)}$.

Deconvolution: II Practice

Imaging & Deconvolution: II. Mosaicking

Results: Signal, Noise, and Signal-to-Noise Ratio

Comparison without and with short-spacings

Imaging & Deconvolution: II. Mosaicking

A radio-interferometer is a multiplicative interferometer

Avantage all offsets are irrelevant \Rightarrow Much easier;

Inconvenient Radio interferometer = bandpass instrument;

 \Rightarrow Low spatial frequencies are filtered out.

Integrated emission [K.km.s⁻¹]

PdBI-only component

Bright From 2 to 16 K with a median of 2.5 K.

Compact It fills only $\sim 2\%$ of the surface.

Filtered component

Faint From 0.07 to 1.36 K with a median of 0.14 K.

Extended It fills $\sim 30\%$ of the surface.

Importance of Short-Spacings: II.2 A CO diffuse thick disk in M51 A dense and diffuse components of very different vertical scale heights, which probably mix in the galactic plane. (PAVVS collaboration, Pety et al., 2013)

Relative linewidths

- Fact The filtered component has a velocity dispersion at least twice as large as the compact component.
- **Interpretation (using Koyama & Ostriker 2009)** The extended component has a Gaussian scale height ($\sim 200 \,\text{pc}$) typically 5 times as large as the compact component one ($\sim 40 \,\text{pc}$). The Galaxy scale height is 57 pc (Ferriere 2001, Cox 2005).
- **Consequence** The extended component average density $(1H_2 \text{ cm}^{-3})$ is one order of magnitude lower than the compact component one $(10H_2 \text{ cm}^{-3})$. The Galaxy average density is $0.29H_2 \text{ cm}^{-3}$ (Ferriere 2001, Cox 2005).

Importance of short-spacings: III.1 ALMA alone

Importance of short-spacings: III.2 ALMA + ACA + Short-spacings Short-Spacings also help at large *uv* radius

Imaging & Deconvolution: II. Mosaicking

Observing Setup: II. Single-Dish

- On-The-Fly setup:
 - IRAM-30m resolution at 115 GHz: 22".
 - Raster scanning in RA and then Dec
 - * Speed: 3"/second;
 - * Dump time: 1 second \Rightarrow 7 points/beam;
 - Separation between rasters: $8'' \Rightarrow$ Nyquist sampling.
- Calibration:
 - ON-OFF switching;
 - Hot/cold/atm measurement every 15 minutes;
 - Chopper wheel method;
 - Factor from T_A^* to T_{mb} : F_{eff}/B_{eff}

Imaging & Deconvolution: II. Mosaicking

Short-Spacings Processing: I. Pseudo-visibilities

From $I_{\text{meas}} = B_{30\text{m}} \star I_{\text{source}} + N$ To $V_{\text{pseudo}}(u, v) = \text{FT} \left\{ B_{\text{primary}}^{15m} \cdot I_{\text{source}} \right\} (u, v) + N$

- 1. Gridding + Apodization;
- 2. Deconvolution of B_{30m} in uv plane;
- 3. Multiplication by B_{primary}^{15m} in image plane;

Imaging & Deconvolution: II. Mosaicking

Short-Spacings: II.1 Merging (Amplitude cross calibration)

- Amplitude cross calibration:
 - Extremely important (wrong \Rightarrow distortion);
 - Difficult to achieve (no overlap).
 - \Rightarrow Careful independent work needed.
- Outlier points have extremely low weights \Rightarrow No need to clip them out.

Short-Spacings: II.2 Merging (Weight density and dirty beam shape)

- Dirty beam = FFT of weight density;
- Single-dish total weight: A free parameter (as long as it is down-weighted...)

⇒ Single-dish total weight set to
 get a roughly Gaussian shape for
 the circularly averaged weight density.

- Minimum visual change of the dirty beam;
- Dirty beam integral > 0 after addition of short-spacings.

Imaging: Dirty image and noise (Without short-spacings)

- One dirty image per field (directly the final image size): $I_i = D_i \star (B_{\text{primary}}^{15m}.I_{\text{source}}) + N_i.$
- Linear combination (optimal from signal-to-noise ratio point of view):

- Signal: $S(\alpha,\beta) = \frac{\sum_{i} \frac{B_{i}(\alpha,\beta)}{\sigma_{i}^{2}} I_{i}(\alpha,\beta)}{\sum_{i} \frac{B_{i}^{2}(\alpha,\beta)}{\sigma_{i}^{2}}};$

- Noise: $N(\alpha,\beta) = 1 \left/ \sqrt{\sum_{i} \frac{B_i^2(\alpha,\beta)}{\sigma_i^2}} \right;$

- Signal-to-Noise Ratio: SNR $(\alpha, \beta) = \frac{S(\alpha, \beta)}{N(\alpha, \beta)}$.

Imaging & Deconvolution: II. Mosaicking

Imaging: Dirty image and noise (With short-spacings)

6

4

2

- One dirty image per field (directly the final image size): $I_i = D_i \star (B_{\text{primary}}^{15m} \cdot I_{\text{source}}) + N_i$.
- Linear combination (optimal from signal-to-noise ratio point of view):

Signal:

$$S(\alpha,\beta) = \frac{\sum_{i} \frac{B_{i}(\alpha,\beta)}{\sigma_{i}^{2}} I_{i}(\alpha,\beta)}{\sum_{i} \frac{B_{i}^{2}(\alpha,\beta)}{\sigma_{i}^{2}}};$$

- Noise: $N(\alpha,\beta) = 1 \left/ \sqrt{\sum_{i} \frac{B_i^2(\alpha,\beta)}{\sigma_i^2}} \right;$

Signal-to-Noise Ratio: $SNR(\alpha,\beta) = \frac{S(\alpha,\beta)}{N(\alpha,\beta)}.$

Imaging & Deconvolution: II. Mosaicking

Deconvolution: II.1 Practice (Without short-spacings)

Imaging & Deconvolution: II. Mosaicking

Deconvolution: II.2 Practice (With short-spacings)

Imaging & Deconvolution: II. Mosaicking

FAQ

When observing/adding the short-spacings?

source size < 1/3 primary beamwidth Short-spacings are superfluous.

- 1/3 primary beamwidth < source size < 1/2 primary beamwidth A single spectrum in the direction of the source is OK.
- **1/2 primary beamwidth** < **source size** An OTF map is required.
- Field of view PdBI field of view + PdBI half primary beam bandguard ⇒ Double the field of view for a 7 field mosaic. But there is no need to integrate on empty sky...
- **Single dish integration time** Same time as the PdBI compact (D) configuration (assuming 6 antennas and similar receiver system at both observatories).
- **Needed data quality** As good as possible (pay attention to data consistency, e.g., coordinate system, frequency tuning)... Don't spoil your interferometric data with crap single-dish data.
- There is signal with PdBI but only noise at the 30m Your source may be a collection of point sources diluted in the 30m beam. This is the case where adding the short-spacings may just add noise.

Mosaicking: A standard observing mode An example among many: The Horsehead PDR

Imaging & Deconvolution: II. Mosaicking

Mosaicking: State-of-the-art with PdBI in 2010 I. PAWS (PdBI Arcsecond Whirlpool Survey, PI: E.Schinnerer)

Past:

- Revolution 1 (1997-2007): Mosaicking.
- Revolution 2 (2009-Today): Large programs.

Present:

- Mosaic of 60 fields at 3 mm \Rightarrow Field of view: $3.5' \times 2.8'$.
- 8 hr in D, 15 hr in C, 43 hr in B and 60 hr in A \Rightarrow 454 000 visibilities \times 1024 channels and a final resolution of \sim 1".
- Imaging and deconvolution require images of 2 Mpixels (in fine: only 36 000 fully independant pixels).
 ⇒ 8 days and 14 hours to deconvolve 20 channels (320 000 components per channel).
- Mosaicking ~ Raster mapping for a single-dish.
 ⇒ 8-9 seconds lost when moving from one field to the next one.

Future:

- Interferometric On-The-Fly.
 - New observing mode + new imaging algorithm.

Mosaicking: State-of-the-art with PdBI in 2010 II. Why/How HD TV changes your life

Mosaicking: State-of-the-art with PdBI in 2010 III. Multi-wavelength comparison (Schinnerer et al. 2013, Meidt et al. 2013)

SINGS H α Spitzer 8 μ m ¹²CO (J=1-0)

Molecular ring Coincident star formation

Spiral arm, inside spiral corotation Suppressed star formation.

Spiral arm, outside spiral corotation Offset star formation.

Imaging & Deconvolution: II. Mosaicking

Mosaicking: ALMA in 2014 Orion Bar PDR (Goicoechea et al. 2016)

Mosaicking: ALMA in 2014 Orion Bar PDR (Goicoechea et al. 2016)

HCO⁺ J=3-2 (ALMA+IRAM-30m), [Oi] 6,300 A (VLT/MUSE), [Sii] 6,731 A (VLT/MUSE)

Mosaicking: State-of-the-art with NOEMA in 2016 $10' \times 10'$ on IC 342 (PI: A.Schruba)

Imaging & Deconvolution: II. Mosaicking

Imaging & Deconvolution: II. Mosaicking

Next step: Mapping wide fields over wide bandwidths, e.g., Orion B PI: J.Pety, J.Orkisz, E.Bron, V.Guzman et al.

(C) J.Pety 2016

Integration time 133 hours.

Field of view $5 \times 7 \,\text{pc}$ at a distance of 400 pc.

Spatial resolution 50 mpc or $10^5 \text{ AU} \Rightarrow$ images of 315×420 pixels.

Bandwidth 32 GHz from 84 to 116 GHz.

Spectral resolution 200 kHz resolution.

Number of channels \Rightarrow 160 000 channels, *i.e.*, at 24 images per seconds, it makes a movies of 1h50!

Field of view \times channels 144 000 channel \times square degree (*i.e.*, the equivalent of twice of the sky in 5 days!).

Median noise level 0.1 to $0.5 \text{ K} (T_{\text{mb}})$.

A sea of noise Clear signal detected in ~ 800 channels, or 0.5% of the data (a video of about 30 seconds).

Data size 900 GB of raw data.