A Calibration Scheme
for the IF Polarimeter using the coherence
matrix formulation

Identifier - Master URL:

http://iram.fr/ ifpol /reports/

Revision: CalJones.html ,v 1.02

Date: 2001-09-17

Author: Helmut Wiesemeyer (email: wiesemeyer@iram.fr)
Contributors: C. Thum, D. Morris

Audience: 1) everybody involved with polarimetry at the 30m telescope
2) IRAM astronomers

Publisher: IRAM, Grenoble

Subject and Keywords: polarimetry, calibration, Stokes parameters, IF
polarimeter, Jones matrices, density operator, coherence matrix

Description - about this document:

A calibration scheme for the IF polarimeter at the MRT is worked out using Jones
matrices and the quantum-mechanical density operator (the coherence matrix in classi-
cal theory). It is shown that the proposed calculus combines the advantages of Jones
calculus and Mueller matrices.

Related documents:
http://iram.fr/ thum /ifpol 04.ps.gz



CONTENTS

Contents

1 Introduction

2 Jomnes Calculus and the Density Operator
3 Measurement of the calibration factors

4 Correcting for the polarimeter gains

A The density operator in praxis

B An example: quarter-wave plates

C Correlation polarimetry

D Interferometric polarization

10

12



1 INTRODUCTION 3

1 Introduction

The IF polarimeter has two input channels (containing the data streams from a vertically
respectively horizontally polarized receiver) and four output channels (time averages
of the results of linear operations that are applied to the input data stream by the
polarimeter). Thus, there are eight gains to calibrate, plus two gains describing the
gains of the individual receivers with respect to the common power reference. The
power reference for all gains is the mean power in the receiver pair used.

2 Jomnes Calculus and the Density Operator

The Jones calculus® uses 2 x 2 matrices with complex elements, and can handle phase
information in a fully consistent way, unlike the Mueller matrices?. On the other hand,
Jones matrices only handle pure polarization states (Mueller matrixes treat them in a
fully consistent way). To treat mixed ensembles, one first has to split them into several
pure ensembles, and then has to proceed by incoherent summation of the results. This
is not a restriction here, if we assume that the four channels of the IF polarimeter plus
the two channels bypassing it measure pure polarization states. However, this assump-
tion does not hold anymore when the two receivers used do not measure merely pure
polarization states. We will see below that it is nevertheless possible to extend the
Jones calculus to the case of coherent addition of mixed ensembles, using the quantum-
mechanical density operator. We thus have a fully consistent calculus to treat the
measurement of photon ensembles in mixed polarization states with complex devices
containing phase shifts and individual gains. Appendix A presents some further exam-
ples of how to use the calculus in polarimetry praxis. An effort to combine the Mueller
and Jones calculus into a more powerful one capable of both treating phase information
and mixed polarization states was already done by Hamaker et al. (A&A Supp. 117,
161, further references therein). Here I would like to show that such a calculus naturally
results from the consequent application of quantum theory. Unlike the Hamaker calcu-
lus, the transformations that represent optical devices have a straightforward physical
interpretation.

Jones matrices are tightly related to the Dirac description of quantum-mechanical two-
state systems. The polarization state of a single photon can be either described in a
base space given by horizontal and vertical polarization, or by left-hand and right-hand
circular polarization. In the following, the first base space is chosen, with the z-axis in
horizontal and the y-axis in vertical direction. The direction of photon propagation is
taken in positive z-direction.

1Jones, R.C., 1941, J.Opt.Soc.Am. 31, 488
2Mueller, H., 1948, J.Opt.Soc.Am. 38, 661
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A horizontally polarized photon is described by a vector

o= (g ) o)

and its vertically polarized equivalent by

o= (1) ®)

A photon state |y’ > that is linearly polarized at an angle of 45° with respect to the
positive x-axis is given by

1
"'>= —(|lz > +|y >), 3
ly 7 (1 ly >) (3)
and a photon state |z’ > linearly polarized at an angle of —45° by
Y >= = (2> —ly >) (4)
V2

(the leading factor is to normalize probabilty to one). A circularly polarized photon can
be described as a superposition of a horizontally polarized one and a /2 phase shifted,
vertically polarized one. For a right-hand circularly polarized photon state we have

R >= 1 (lz > +ily >) , (5)

V2

and for its left-hand circularly polarized counterpart

L>= — (—|z > +ily >) - (6)

V2

A receiver that only observes horizontally polarized light (e.g. the B100) acts like a
projection operator in quantum mechanics, which is given by the outer product g

26=|x><x|=<(1)>-(1,0)=((1]8) (7)

Similarly, the receiver measuring the vertically polarized flux (e.g. the A 100) acts like

an operator X
0 00
si=ly><al=(§)-0n=(7 ) ®)

We can combine both receivers before time averaging to measure polarization at an angle
of 45° from the z-axis, the corresponding operator being the outer product

1 1 11
Si=ly ><f| =5 lo> > (el < =3 (1 1) @
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respectively, for an angle of —45°,

— <l = o>~ > (<ol <=5 ( ) ) ) o

N | —

Measuring right-hand circular polarization can be achieved by combining a horizontally
polarized receiver with its 7 /2 phase-shifted, vertically polarized counterpart, i.e.

1 , ) 1 1 —i
Ba=R>< Rl = (o> iy >)- (<ol —i<a)=3-(} 7). an
and correspondingly for left-hand circular polarization
1 . 1 1 4
=[L><Li=g(-le>+ily>)-(-<zl-i<y)=5-| _; , (12)

(we have to use the complex conjugates in dual space).

Thus, the measurement of these six states of polarization can be achieved by suitable
coherent linear combinations of the receivers’s signals, i.e.

¥ = Ao + Bioo, 22 = Aroo — Bioos
Y3 = Ajgg + Bioo, X4 = Ay — Bioo,
Y5 = Ao, Y6 = Bioo- (13)
(14)

With the time averages of these output channels, the four Stokes parameters are fully
characterized (Stokes I is evidently overdetermined). In the quantum-electrodynamical
expression of the density operator of a mixed ensemble of polarized photons, proba-
bilistic concepts appear twice: first in the probability of a single photon to be in some
polarization state |p >, and second the probability of finding this state in an ensemble
of photons. Thus, the density matrix® reads

) = %{25+26)+q(26 %) + u(E1 — ) + v(Ss — Ta)}

(D)oo )=(T0)= (0 3)) oo

(16)

DO | =

since Stokes ¢ is the difference between horizontally and vertically polarized flux, Stokes
u the difference between flux linearly polarized at angles 45° respectively —45° with
respect to the horizontal direction, and finally Stokes v the difference between right-
hand and left-hand circularly polarized flux.

3Note the formal analogy of the matrices with the Pauli spin matrices.



3 MEASUREMENT OF THE CALIBRATION FACTORS 6

The incoming flux made of a mixed ensemble of photons in pure polarization states is
thus measured by the ensemble averages (i.e. time averages denoted [...]) of the operator
that counts these photons, i.e.

¢ = 5 (1%~ [53]) = 5 tr(o- (55— %)
uo= g (1= ]) = S (o (51 - )
vo= 5 (1)) = g (o (35— %) (17)

These equations explicitely show that we could work with Jones matrices, since the
difference of the traces of two matrices is the trace of the difference matrix. However,
this would not be true anymore if the operators ¥; (j = 1, ...,6) do not measure pure
polarization states. In practice, we do not measure the average values ¥, but those of a
device containing individual gain factors. These average values are hereafter called [S;].
The Stokes parameters can be derived from these values after a gain calibration, which
is detailed in the next section.

3 Measurement of the calibration factors

In order to calibrate the polarimeter gains, a fully linearly polarized signal from a signal
generator is injected into the receivers. The polarization angle is 45°. Since small
instrumental errors may introduce a deviation from this angle and thus result in a
calibration error, I first follow the general case of a polarization angle ©. In the following,
I assign complex gains g;; to each polarimeter channel, where the first index stands for
the input channel, and the second one for the polarimeter output channel. The operators
of a calibration measurement, where receiver Bgg is phase shifted with respect to Aig
by some angle ¢, thus read

1 —i ; 1 g21?  gorgiie®
S, == i > >)-(g, i < < == ; ' )
1= 5 (921‘3 |z > +guly ) (g21e x| + g% y|) 5 (Qéklgneus lgna|?
(18)
and accordingly for the other operators
1 |22 |? —ga2gipe"
g, — . . 12 , 19
272 ( —g1295,€" |g12/? (19)
1 923> —igasgize ¥
Sg=—=- . "7 . 13 , 20
) ( ig13933€" |g13[? (20)
1 |goa|? igaagie™™
S, == - , , 14 , 21
10 ( —ig14951¢°  [g1a]? (21)

0 0
S5 = 22
5 (0 |915‘2> ’ ( )



3 MEASUREMENT OF THE CALIBRATION FACTORS 7

Se = ( ‘9206|2 8 ) . (23)

Note how phase difference between the signal are introduced in a simple and straight-
forward way, making the formalism capable of treating calibration for interferometric
polarization measurements. In order to calibrate the polarimeter gains, a fully linearly
polarized signal from a signal generator is injected into the receivers. The polarization
angle is 45°. Since small instrumental errors may introduce a deviation from this angle
and thus result in a calibration error, I first follow the general case of a polarization
angle ©. The density matrix for that case is given by equation 16, with ¢ = cos (20),
u = sin (20), and v = 0. The traces of the matrices pS; (with j = 1,...,6) yield the
calibration curves as a function of the phase shift §:

and

[S:] = % : (‘921\2 cos” © + [g11|*sin® © + cos O sin O - (gmgﬁe_i‘s n gngglei‘s)) ’

S:] = % ' (|g22|2 cos”© + |g12[* sin® © — cos O sin O - (gaagrre * + 912932916)) ,

[Ss] = % . (|923|2 cos® © + |g13/?sin? © + i cos O sin O - (—gozglze ™ + g1gg§3ei5)> ’
[S4] = % (|gz4\2(:032® + |g14|*sin® © + i cos O sin © - (gasgl,e™™ — gl4g§4ei‘5)),
[Ss] = sin®©|gi5]?,

[Ss] = cos®O|gal*. (24)

Since all these ensemble averages are observables, they must be real. This can be easier
seen by writing .

gy = - €V, (25)
where ~;; is the amplitude of g;;, and 135 its phase:

1
Si] = 5 (fygl cos? © + 72, sin? © + 2sin © cos Oy1;721 cos (Yo — W1, — (5)) ,
1 2 2 2 2 .
So] = 5 (722 cos” © + i, sin” © — 25in © cos Oy127y22 €os (Pg — P12 — 5)) :
1
[S3] = 5 (753 cos? © + 2%, sin? © + 25in O cos O13723 sin (Vo3 — Y13 — 5)) ,
1
[S4] = 5 (734 cos? © + 72, sin? © — 2in O cos Oy147Ya4 Sin (Yoq — Y14 — 5)) . (26)

The above results show the following:

e The phase factors of the complex gains merely enter as phase differences. Least-
square fits to the four [S;] as a function of ¢ yield the gain amplitudes and phase
differences and show that the latter are essentially all the same. They can therefore
be calibrated out using the phase shifter for the Bgy signals. Only the amplitudes
of the gain factors remain important for data reduction.
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Figure 1: Example of a phase sweep measurements. The dashed red line is a least-square
fit to the data.

e There is no way to determine the angle © from the fits, because ~;; cos © cannot be
separated in the fit, neither vj, sin ©. However, if the gains gj; are systematically,
i.e. for j =1 to 4, smaller or larger than the gains gj;, an error in the experimental
setup must be suspected.

e In order to obtain a good fit, the difference between the wanted phase shift delta
and the true one has to be as small as possible. After a few tests, it turned out
that the best fit results are obtained if the voltage-to-phase conversion factor is
left as a free variable to be fitted. The result from the best fit was then used as a
fixed parameter for all four sine-curve fits.

4 Correcting for the polarimeter gains

The application of a calibrations scheme is now straightforward: we have to obtain the
average values of the operators 3; to ¥ given by equations 7 to 12 from the measured
ones S; to Sg given by equations 18 to 23. The gains g;; (now assumed to be all real,
hence equivalent to the ;; from the previous section) are determined by means of a least
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square fit to a phase sweep (figure 1). It is easy to show that

5] = [2s] = 5. S _[SG].<&_@>_@.<&_&>,

g11921 922912 2!]%6 911 g12 29%5 g21 g22

[Sa] = [B] = 51 (S _[86].<%_%)_@.<%_&),

923913 g14924 29%6 913 g14 29%5 923 924
[Se]  [Ss]

[26] - [25] = 5 T 3 - (27)
926 915

Inserting these average values into equation 17 yields the gain-corrected Stokes param-
eters?.

It should be noted that the gains as introduced here are assumed to be the same across
the whole spectral bandwidth of a polarimeter channel. However, as laboratory mea-
surements show (S.Navarro, priv. comm.), this is not strictly the case. The above
formulae may be used to seperately calibrate all the spectral channels of a polarimeter
channel.

Appendix

A The density operator in praxis

The basic idea of the calculus used here is to not consider anymore the transfer of a pure
polarization state through an arbitrary device, but to only consider the complex density
operator of the mixed ensemble of polarization states we want to deal with. Thus,
the effect of a device changing the polarization properties of an incoming ensemble of
photons has to be described by a matrix transformation of the kind

Pnew = TﬁlpOIdT . (28)

Thus, optical devices in the incoming light ray are described by 2 x 2 transformation
matrices 7. Sequentially mounted devices are thus described by matrix products.

B An example: quarter-wave plates

As an example, I demonstrate the case of the quarter-wave plate. Its effect on the
incoming polarized light is that it changes Stokes U into V, and Stokes V into —U,
leaving Stokes () and [ invariant. The simple Jones calculus cannot treat such a device,
since the incoming light may be polarized in both Stokes U and V', and thus represent
a mixed ensemble. The Mueller matrix of a quarter-wave plate is easily written down,

4The gain correction as derived here is equivalent to that given by equations (12) to (15) in the
report A Prototype IF Polarimeter at the 30m Telescope.
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but cannot handle devices where phase shifts of the incoming signals are important. We
resume the density operator equation 16, i.e.

1 14q u—1v
pOId_§<u+z’U 1_q)' (29)

We look for a transformation 7" that yields ppey, such that

_ 1 14+q v+iu
— 1 _ =
Prew _TpoldT - 2 ( v—iu 1 —q ) : (30)

Writing

a21 Qa22

T = < dun iz ) : (31)

and knowing that the inverse transformation 7! is given by

1 (oo @
T-1 — 22 Q21 39
det(T) ( a2 o )’ (32)

it is readily shown that the result is

T1:<(1)(;>, (33)

if we take the horizontally polarized photon as phase reference. The physical inter-
pretation is clear: the transformation 7! just inserts a phase lag of m/2 between the
horizontally and vertically polarized photons, and thus converts linear polarization at
an angle of 45° to RHC polarization.

C Correlation polarimetry

As equation 26 show, the polarimeter output channels contain total power terms, and a
correlation term (the third one). I show now that the Stokes parameters U and V can
be directly derived from a correlation measurement, i.e.

Ryo(1) = [Sa(t +7)SB(?)], (34)

where the index A denotes the vertically polarized receiver, and index B the horizon-
tally polarized one. It is of double interest here to not only measure R15(0): first, the
Wiener-Khinchin-Theorem can be used to derive the cross-power spectral density; sec-
ond, the cross-correlation is real, and can be decomposed into an even and an odd part
with respect to time-reversal, yielding after a FFT the real and imaginary part of the
Spectral power density.
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In quantum mechanics, the correlation amplitude that some polarization state o con-
tains an Eigenstate |y > of the vertically polarized receiver (i.e. of the matrix S5) and
that its identical copy contains an Eigenstate |x > of the horizontally polarized receiver
(i.e. of the matrix Sg) is given by the amplitude product

< zla® >< yla? >*=< 20D >< D]y > . (35)

Now the probability of finding this polarization state |a() > in an ensemble of photons
is given by w;. The correlation then yields the backend counts R;2(0) (assuming the
ergodic hypothesis, that an ensemble average can be replaced by a time average):

Rip(0) =Y wi < 2o >< oy > . (36)

2

Introducing identity operators and re-writing the result, this expression can be expressed

in the more familiar form
Ri5(0) = tr(pA), (37)

where p is the density operator of the observed mixed ensemble of polarization states,
and A is the outer product of the eigenvectors of the S; and Sg operators, i.e.

01
a=i>ous=(5 4 ), 39

and thus, after FF'T from time lag to frequency domain,

_ 1 1+q, wu,—1v, 01 Uy F 10,
7""712_“<§<uu+m 1-q ) (0 0))‘7' (39)
U and V are thus observed as the real and imaginary part of the cross power spectral

density. Stokes () is retrieved from the difference of the autocorrelations of both re-
ceivers, as above.

We can calibrate the relative phase between the two receivers in the same way as above,
i.e. the matrix A now reads

—id Epe )
_ [ 9vae sy [0 guigee
Thus, the output reads, taking p with ¢ = cos(20), u = sin (20), and v = 0,

o] - 09200, (41)

1 .
Ty12 = 3 sin (20)|g,.1

The polarimeter thus yields the uncalibrated Stokes parameters (relative to the intensity)

7;,/ = sin2 6‘9%2‘2 + COS2 G‘gl/,l‘Q 3
qv sin2 @\gu,2\2 - COSQ @‘gu,l 2 ’
u, = 2R(ry,12) = +5in (20)[g,,

|gu,2| COS ((5 + ¢I/,2 - ¢u,1) )
Uy = 2%(7'1/,12) = —sin (26)‘91/,1 ‘gu,Q sin (6 + ¢u,2 - ¢I/,1) ) (42)
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where ¢, and ¢, are the phases of the complex gains g,; and g,2. Once again,
the fit cannot distinguish between a misalignment of the oscillator position and a gain
imbalance. Assuming a perfect gain calibration of the two receivers, the alignment of the
oscillator source may be determined from the phase sweep. The result also shows that
u, and v, may be retrieved either from the real and imaginary part of the cross-power
spectral density (i.e. from the even and odd part of the cross-correlation with respect to
time reversal), or by inserting suitable phase shifts into the time-domain response (i.e.
01 = ¢1 — ¢y respectively do = ¢ — P9 — m/2 to retrieve u or v). The latter approach is
evidently only possible for continuum work, since the phase shifts are IF dependent.

For spectroscopic work, the role of the calibration is twofold:

e Determine the phase shift § between both receivers (cf. the delay calibration in
radio interferometry) at some reference IF (e.g. the IF of the oscillator signal).
This fixes the sign of Stokes V.

e Calibrate the remaining complex bandpass response (cf. the radio-interferometric
bandpass calibration) with a fully polarized continuum source of flat spectral in-
dex. Astronomical sources may be used: baseline problems cancel out, since the
atmospheric contribution should be unpolarized, and hence the signals in both
receivers fully uncorrelated. Whether this calibration source is polarized in u or in
v does not matter: we can shift the power between them by adjusting the phase

J.

Once the complex bandpass calibrations factors are determined, it is possible to get
calibrated Stokes spectra from the complex cross-correlation product (the index ¢ means
"calibrated"):

1
Uy = ——— (R(ry12) cos Ag, + 7,12 8in Agu) ,
|Gv,11190,2]

1
Ve = ——— - (S(r,12) cos Ag, — Rr, 12510 Ad,u), (43)
9v,1/1902]

where Ad, = ¢p1 — P2

D Interferometric polarization

Polarimetry with an interferometer equipped with dual-polarization receivers works in
principle as described in the previous section. It will be treated in another technical
report.



