next up previous contents
Next: 2.3 Delay Tracking and Up: 2.2 The Heterodyne Interferometer Previous: 2.2.1 Source Size Effects

2.2.2 Finite Bandwidth

Integrating over $d\nu$,

 \begin{displaymath}R = \frac{1}{\Delta \nu} \int_{\nu_0-\Delta \nu / 2}^{\nu_0+\Delta \nu /2}
\vert V\vert \cos(2 \pi \nu \tau_g - \Phi_V) d\nu
\end{displaymath} (2.18)

Using $\nu = \nu_0 + n$
 
R = $\displaystyle \frac{1}{\Delta \nu} \int_{-\Delta \nu /2}^{\Delta \nu / 2}
\vert V\vert \cos(2 \pi \nu_0 \tau_g - \Phi_V + 2 \pi n \tau_g) dn$ (2.19)
  = $\displaystyle \frac{1}{\Delta \nu} [ \int_{-\Delta \nu /2}^{\Delta \nu / 2}
\vert V\vert \cos(2 \pi \nu_0 \tau_g - \Phi_V) \cos(2 \pi n \tau_g) dn$  
    $\displaystyle - \int_{-\Delta \nu /2}^{\Delta \nu / 2}
\vert V\vert \sin(2 \pi \nu_0 \tau_g - \Phi_V) \sin(2 \pi n \tau_g) dn ]$ (2.20)
  = $\displaystyle \frac{1}{\Delta \nu} \vert V\vert \cos( 2 \pi \nu_0 \tau_g - \Phi...
... \pi n \tau_g) \right]_{-\Delta \nu /2}^{\Delta \nu / 2}
\frac{1}{2 \pi \tau_g}$  
    $\displaystyle + \frac{1}{\Delta \nu} \vert V\vert \sin( 2 \pi \nu_0 \tau_g - \P...
... \pi n \tau_g) \right]_{-\Delta \nu /2}^{\Delta \nu / 2}
\frac{1}{2 \pi \tau_g}$ (2.21)
  = $\displaystyle \vert V\vert \cos(2 \pi \nu_0 \tau_g - \Phi_V) \frac{\sin(\pi \Delta \nu \tau_g)}
{\pi \Delta \nu \tau_g}$ (2.22)

The fringe visibility is attenuated by a ${\rm sin}(x)/x$ envelope, called the bandwidth pattern, which falls off rapidly. A 1% loss in visibility is obtained for $\vert\Delta\nu\tau_g\vert \simeq 0.078$, or with $\Delta\nu = 500$MHz and a baseline length b = 100m, when the zenith angle $\theta$ (defined in Fig.2.3) is 2 arcmin only. Thus, the ability to track a source for a significant hour angle coverage requires proper compensation of the geometrical delay when a finite bandwidth is desired.


next up previous contents
Next: 2.3 Delay Tracking and Up: 2.2 The Heterodyne Interferometer Previous: 2.2.1 Source Size Effects
S.Guilloteau
2000-01-19