next up previous contents
Next: 14.3 Experimental data space Up: 14. Advanced Imaging Methods: Previous: 14.1 Introduction

14.2 Object space

In the problems of Fourier synthesis encountered in astronomy, the object function of interest, $\Phi_{\! o}$, is a real-valued function of an angular position variable $\mathbf{\sigma} \equiv \mathbf{x} = (x,y)$. The geometrical elements under consideration are presented in Fig. 14.1.


  
Figure: Traditional coordinate systems used to express the relation between the complex visibilities and the brightness distribution of a source under observation. Here, the two antennas Aj and Akpoint toward a distant radio source in a direction indicated by the unit vector  s, and  b is the interferometer baseline vector. The position pointed by the unit vector  so is commonly referred to as the phase tracking center or phase reference position: $\mathbf{s} - \mathbf{s}_o = \mathbf{\sigma}$.
\begin{picture}(100,140)(0,0)
%\put(0,0){\line(1,0){100}}
%\put(0,140){\line(1,0...
...} \put(30,110){\vector(-1,
-4){5}} \put(22,98){$\mathbf{\sigma}$ }
\end{picture}

The object model variable $\phi$ lies in some object space Ho whose vectors, the functions $\phi$, are defined at a high level of resolution. This space is characterized by two key parameters: the extension $\Delta x$ of its field, and its resolution scale $\delta x$. To define this object space more explicitly, we first introduce the finite grid (see Fig. 14.2):

 \begin{displaymath}\text{\boldmath$G$\unboldmath } = \text{\boldmath$L$\unboldma...
...boldmath } : -\frac{N}{2} \leq p \leq \frac{N}{2}-1
\right\},
\end{displaymath} (14.1)

where N is some power of 2.

On each pixel $\mathbf{p}\,\delta x (\mathbf{p}\in\text{\boldmath$G$\unboldmath })$, we then center a scaling function of the form

 \begin{displaymath}e_{\mathbf{p}}(\mathbf{x}) = e_{\mathbf{0}}(\mathbf{x}-\mathb...
...}{\delta x}\bigr)
\text{sinc} \bigl( \frac{y}{\delta x}\bigr).
\end{displaymath} (14.2)


  
Figure: Object grid $\text{\boldmath $G$\unboldmath}\,\delta x$ (left hand) and Fourier grid $\text{\boldmath $G$\unboldmath}\,\delta u$ (right hand) for N=8. The object domain is characterized by its resolution scale $\delta x$and the extension of its field  $\Delta x = N\delta x$, where N is some power of 2 (the larger is N, the more oversampled is the object field). The basic Fourier sampling interval is  $\delta u = 1 / \Delta x$, the extension of the Fourier domain is  $\Delta u = 1/\delta x$.
\begin{figure}
\setlength{\unitlength}{1mm}
\begin{picture}
(110,60)(0,0)
%%
\p...
...ector(2,1){9.8}}
\put(96,41){$\mathbf{q}\delta u$ }
%%
\end{picture}\end{figure}

It is easy to verify that these functions form an orthogonal set. In this presentation of WIPE, the object space Hois the Euclidian space generated by the basis vectors ep, p spanning $\text{\boldmath$G$\unboldmath }$ (see Fig. 14.2). The dimension of this space is equal to N2: the number of pixels in the grid  $\text{\boldmath$G$\unboldmath }$. The functions $\phi$ lying in Ho can therefore be expanded in the form

\begin{displaymath}\phi(\mathbf{x}) = \sum_{\mathbf{p}\in\text{\boldmath$G$\unboldmath }}
a_{\mathbf{p}} e_{\mathbf{p}}(\mathbf{x}),
\end{displaymath} (14.3)

where the  ap's are the components of $\phi$ in the interpolation basis of Ho.

The Fourier transform of $\phi$ is defined by the relationship

   \begin{displaymath}\widehat{\phi} (\mathbf{u}) = \int \phi(\mathbf{x})
\,\text{e...
...ext{i}\pi \mathbf{u}\!\cdot\!\mathbf{x}}
\,\text{d}\mathbf{x},
\end{displaymath}

where u is a two-dimensional angular spatial frequency: u = (u,v). According to the expansion of $\phi$ we therefore have:

 \begin{displaymath}\widehat{\phi} (\mathbf{u}) = \sum_{\mathbf{p}\in\text{\boldm...
...ldmath }}
a_{\mathbf{p}} \widehat{e}_{\mathbf{p}}(\mathbf{u}),
\end{displaymath} (14.4)

where

 \begin{displaymath}\widehat{e}_{\mathbf{p}}(\mathbf{u}) = \widehat{e}_{\mathbf{0...
...c{u}{\Delta u}\bigr)
\text{rect}\bigl(\frac{v}{\Delta u}\bigr)
\end{displaymath} (14.5)

and $\Delta u = 1/\delta x$.

The dual space of the object space, $\widehat{H}_o$, is the image of Ho by the Fourier transform operator: $\widehat{H}_o$ is the space of the Fourier transforms of the functions $\phi$ lying in Ho. This space is characterized by two key parameters: its extension  $\Delta u = 1/\delta x$, and the basic Fourier sampling interval  $\delta u = 1 / \Delta x$ (see Fig. 14.2).


next up previous contents
Next: 14.3 Experimental data space Up: 14. Advanced Imaging Methods: Previous: 14.1 Introduction
S.Guilloteau
2000-01-19