next up previous contents
Next: 14.4 Image reconstruction process Up: 14. Advanced Imaging Methods: Previous: 14.2 Object space

14.3 Experimental data space

The experimental data  $\Psi_{\! e}(\mathbf{u})$ are blurred values of  $\widehat{\Phi}_o(\mathbf{u})$ on a finite list of frequencies in the Fourier domain:

 \begin{displaymath}\mathcal{L}_e = \{ \mathbf{u}_e(1), \mathbf{u}_e(2), \dots, \mathbf{u}_e(N_e)\}.
\end{displaymath} (14.6)

As the object function of interest $\Phi_{\! o}$ is a real-valued function, it is natural to define  $\Psi_{\! e}(-\mathbf{u})$as the complex conjugate of  $\Psi_{\! e}(\mathbf{u})$. The experimental frequency list  $\mathcal{L}_e$ is defined consequently: if  $\mathbf{u}\in\mathcal{L}_e$, then  $-\mathbf{u}\in\mathcal{L}_e$(except for the null frequency  u=: in the convention adopted here, either it does not lie in  $\mathcal{L}_e$, or there exists only one occurrence of this point). The experimental frequency coverage generated by  $\mathcal{L}_e$is therefore centrosymmetric (see Fig. 14.3).


  
Figure: An example of an experimental frequency coverage provided by the IRAM interferometer. Here, the number of points Ne in the experimental frequency list  $\mathcal{L}_e$ is equal to 2862.
\resizebox{8.0cm}{!}{\includegraphics[angle=270]{eafig3.eps}}

The experimental data vector  $\Psi_{\! e}$ lies in the experimental data space Ke, the real Euclidian space underlying the space of complex-valued functions $\psi$ on  $\mathcal{L}_e$, such that  $\psi(-\mathbf{u}) = \bar{\psi}(\mathbf{u})$. The dimension of this space is equal to Ne: the number of points in the experimental frequency list  $\mathcal{L}_e$.


next up previous contents
Next: 14.4 Image reconstruction process Up: 14. Advanced Imaging Methods: Previous: 14.2 Object space
S.Guilloteau
2000-01-19