next up previous contents
Next: 8.5.3 General case Up: 8.5 Correction for atmospheric TA* Previous: 8.5.1 Simplest case

8.5.2 More realistic case

Typically, the mean atmosphere temperature is lower than the ambient temperature near the ground by about 40 K: $T_{atm} \simeq T_{gr} - 40~{\mathrm K}$; then, the formula above still holds if we replace Tcal by:

  
Tcal = $\displaystyle ({T_{load}- T_{emi}})e^\tau$ (8.33)
with  Temi = $\displaystyle T_{sky} \eta_f+ (1-\eta_f) T_{gr}$  
  = $\displaystyle \frac{(T_{load}+ T_{rec})\times M_{atm}}{M_{load}}-T_{rec}$ (8.34)
$\displaystyle \T_{sky}$ = $\displaystyle (1-e^{-\tau})(T_{gr}-40)$  

Trec, the receiver effective temperature is usually calculated by the Yfactor method using a cold load (usually cooled in liquid nitrogen, i.e. at 77 K) and an ambient load (e.g. at 290 K).
 
Y = $\displaystyle \frac{M_{hot\_load}}{M_{cold\_load}}$  
Trec = $\displaystyle \frac{T_{hot\_load}-Y T_{cold\_load}}{Y-1}$ (8.35)


next up previous contents
Next: 8.5.3 General case Up: 8.5 Correction for atmospheric TA* Previous: 8.5.1 Simplest case
S.Guilloteau
2000-01-19