next up previous contents
Next: 16.3 Experimental data space Up: 16. Advanced Imaging Methods: Previous: 16.1 Introduction   Contents

16.2 Object space

In the problems of Fourier synthesis encountered in astronomy, the object function of interest, $ \Phi_{\! o}$, is a real-valued function of an angular position variable $ \mathbf{\sigma} \equiv \mathbf{x} = (x,y)$. The geometrical elements under consideration are presented in Fig. 16.1.

Figure 16.1: Traditional coordinate systems used to express the relation between the complex visibilities and the brightness distribution of a source under observation. Here, the two antennas $ A_j$ and $ A_k$ point toward a distant radio source in a direction indicated by the unit vector  $ \mathbf {s}$, and  $ \mathbf {b}$ is the interferometer baseline vector. The position pointed by the unit vector  $ \mathbf {s}_o$ is commonly referred to as the phase tracking center or phase reference position: $ \mathbf {s} - \mathbf {s}_o = \mathbf {\sigma}$.
\begin{picture}(100,140)(0,0)
% put(0,0)\{ line(1,0)\{100\}\}
% put(0,140)\{ lin...
...$} \put(30,110){\vector(-1,
-4){5}} \put(22,98){$\mathbf{\sigma}$}
\end{picture}

The object model variable $ \phi$ lies in some object space $ H_o$ whose vectors, the functions $ \phi$, are defined at a high level of resolution. This space is characterized by two key parameters: the extension $ \Delta x$ of its field, and its resolution scale $ \delta x$. To define this object space more explicitly, we first introduce the finite grid (see Fig. 16.2):

$\displaystyle \mathbb{G}= \mathbb{L}\times \mathbb{L}, \quad \mathbb{L}= \left\{ p\in\mathbb{Z}: -\frac{N}{2} \leq p \leq \frac{N}{2}-1 \right\},$ (16.1)

where $ N$ is some power of $ 2$.

On each pixel $ \mathbf{p} \delta x (\mathbf{p}\in\mathbb{G})$, we then center a scaling function of the form

$\displaystyle e_{\mathbf{p}}(\mathbf{x}) = e_{\mathbf{0}}(\mathbf{x}-\mathbf{p} \delta x)$   with$\displaystyle \quad e_{\mathbf{0}}(\mathbf{x}) =$   sinc$\displaystyle \bigl( \frac{x}{\delta x}\bigr)$   sinc$\displaystyle \bigl( \frac{y}{\delta x}\bigr).$ (16.2)

Figure: Object grid $ \mathbb{G} \delta x$ (left hand) and Fourier grid $ \mathbb{G} \delta u$ (right hand) for $ N=8$. The object domain is characterized by its resolution scale $ \delta x$ and the extension of its field  $ \Delta x = N\delta x$, where $ N$ is some power of $ 2$ (the larger is $ N$, the more oversampled is the object field). The basic Fourier sampling interval is  $ \delta u = 1 / \Delta x$, the extension of the Fourier domain is  $ \Delta u = 1/\delta x$.
\begin{figure}\setlength{\unitlength}{1mm}\begin{picture}(110,60)(0,0)
%%
\put(2...
...vector(2,1){9.8}}
\put(96,41){$\mathbf{q}\delta u$}
%%
\end{picture}\end{figure}

It is easy to verify that these functions form an orthogonal set. In this presentation of WIPE, the object space $ H_o$ is the Euclidian space generated by the basis vectors $ e_{\mathbf{p}}$, $ \mathbf{p}$ spanning $ \mathbb{G}$ (see Fig. 16.2). The dimension of this space is equal to $ N^2$: the number of pixels in the grid  $ \mathbb{G}$. The functions $ \phi$ lying in $ H_o$ can therefore be expanded in the form

$\displaystyle \phi(\mathbf{x}) = \sum_{\mathbf{p}\in\mathbb{G}} a_{\mathbf{p}} e_{\mathbf{p}}(\mathbf{x}),$ (16.3)

where the  $ a_{\mathbf{p}}$'s are the components of $ \phi$ in the interpolation basis of $ H_o$.

The Fourier transform of $ \phi$ is defined by the relationship

$\displaystyle \widehat{\phi} (\mathbf{u}) = \int \phi(\mathbf{x})  $e$\displaystyle ^{\displaystyle  -2\text{i}\pi \mathbf{u}\!\cdot\!\mathbf{x}}  \text{d}\mathbf{x},$    

where $ \mathbf{u}$ is a two-dimensional angular spatial frequency: $ \mathbf{u} = (u,v)$. According to the expansion of $ \phi$ we therefore have:

$\displaystyle \widehat{\phi} (\mathbf{u}) = \sum_{\mathbf{p}\in\mathbb{G}} a_{\mathbf{p}} \widehat{e}_{\mathbf{p}}(\mathbf{u}),$ (16.4)

where

$\displaystyle \widehat{e}_{\mathbf{p}}(\mathbf{u}) = \widehat{e}_{\mathbf{0}}(\mathbf{u})  $e$\displaystyle ^{\displaystyle  -2\text{i}\pi \mathbf{p}\!\cdot\!\frac{\mathbf{...
...t{rect}\bigl(\frac{u}{\Delta u}\bigr) \text{rect}\bigl(\frac{v}{\Delta u}\bigr)$ (16.5)

and $ \Delta u = 1/\delta x$.

The dual space of the object space, $ \widehat{H}_o$, is the image of $ H_o$ by the Fourier transform operator: $ \widehat{H}_o$ is the space of the Fourier transforms of the functions $ \phi$ lying in $ H_o$. This space is characterized by two key parameters: its extension  $ \Delta u = 1/\delta x$, and the basic Fourier sampling interval  $ \delta u = 1 / \Delta x$ (see Fig. 16.2).


next up previous contents
Next: 16.3 Experimental data space Up: 16. Advanced Imaging Methods: Previous: 16.1 Introduction   Contents
Anne Dutrey