next up previous contents
Next: 16.4 Image reconstruction process Up: 16. Advanced Imaging Methods: Previous: 16.2 Object space   Contents

16.3 Experimental data space

The experimental data  $ \Psi_{\! e}(\mathbf{u})$ are blurred values of  $ \widehat{\Phi}_o(\mathbf{u})$ on a finite list of frequencies in the Fourier domain:

$\displaystyle \mathcal{L}_e = \{ \mathbf{u}_e(1), \mathbf{u}_e(2), \dots, \mathbf{u}_e(N_e)\}.$ (16.6)

As the object function of interest $ \Phi_{\! o}$ is a real-valued function, it is natural to define  $ \Psi_{\! e}(-\mathbf{u})$ as the complex conjugate of  $ \Psi_{\! e}(\mathbf{u})$. The experimental frequency list  $ \mathcal{L}_e$ is defined consequently: if  $ \mathbf{u}\in\mathcal{L}_e$, then  $ -\mathbf{u}\in\mathcal{L}_e$ (except for the null frequency  $ \mathbf{u}=\mathbf{0}$: in the convention adopted here, either it does not lie in  $ \mathcal{L}_e$, or there exists only one occurrence of this point). The experimental frequency coverage generated by  $ \mathcal{L}_e$ is therefore centrosymmetric (see Fig. 16.3).

Figure 16.3: An example of an experimental frequency coverage provided by the IRAM interferometer. Here, the number of points $ N_e$ in the experimental frequency list  $ \mathcal{L}_e$ is equal to $ 2862$.
\resizebox{8.0cm}{!}{\includegraphics{eafig3r.eps}}

The experimental data vector  $ \Psi_{\! e}$ lies in the experimental data space $ K_e$, the real Euclidian space underlying the space of complex-valued functions $ \psi$ on  $ \mathcal{L}_e$, such that  $ \psi(-\mathbf{u}) = \bar{\psi}(\mathbf{u})$. The dimension of this space is equal to $ N_e$: the number of points in the experimental frequency list  $ \mathcal{L}_e$.


next up previous contents
Next: 16.4 Image reconstruction process Up: 16. Advanced Imaging Methods: Previous: 16.2 Object space   Contents
Anne Dutrey