next up previous contents
Next: 2.6 Array Geometry & Up: 2. Millimetre Interferometers Previous: 2.4 Fringe Stopping and   Contents

2.5 Fourier Transform and Related Approximations

The Complex Visibility is

$\displaystyle V = \vert V\vert e^{i\Phi_V} = \int_{Sky} A(\ensuremath{\text{\bo...
...\unboldmath }}}.{\ensuremath{\text{\boldmath$\sigma$\unboldmath }}}/c)} d\Omega$ (2.31)

Let $ (u,v,w)$ be the coordinate of the baseline vector, in units of the observing wavelength $ \nu $, in a frame of the delay tracking vector $ {\ensuremath{\text{\boldmath $s$\unboldmath }}}_0$, with $ w$ along $ {\ensuremath{\text{\boldmath $s$\unboldmath }}}_0$. $ (x,y,z)$ are the coordinates of the source vector $ \ensuremath{\text{\boldmath $s$\unboldmath }}$ in this frame. Then
$\displaystyle \nu {\ensuremath{\text{\boldmath$b$\unboldmath }}}.{\ensuremath{\text{\boldmath$s$\unboldmath }}}/c$ $\displaystyle =$ $\displaystyle ux + vy + wz$  
$\displaystyle \nu {\ensuremath{\text{\boldmath$b$\unboldmath }}}.{\ensuremath{\text{\boldmath$s$\unboldmath }}_0}/c$ $\displaystyle =$ $\displaystyle w$  
$\displaystyle z$ $\displaystyle =$ $\displaystyle \sqrt{1 - x^2 - y^2}$  
$\displaystyle {\rm and   } d\Omega$ $\displaystyle =$ $\displaystyle \frac{dx dy}{z}   =   \frac{dx dy}{\sqrt{1-x^2-y^2}}$ (2.32)

Thus,

$\displaystyle V(u,v,w) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A(x,...
...) e^{-2i\pi (ux + vy + w(\sqrt{1-x^2-y^2} -1) )} \frac{dx dy}{\sqrt{1-x^2-y^2}}$ (2.33)

with $ I(x,y) = 0$ when $ x^2+y^2 \geq 1$.

If $ (x,y)$ are sufficiently small, we can make the approximation

$\displaystyle (\sqrt{1-x^2-y^2} - 1) w \simeq \frac{1}{2} (x^2+y^2) w \simeq 0$ (2.34)

and Eq.2.33 becomes
$\displaystyle V(u,v)$ $\displaystyle =$ $\displaystyle \ensuremath{\int\!\!\int}A'(x,y) I(x,y) e^{-2i\pi (ux+vy)} e^{-i\pi(x^2+y^2)w} dx dy$ (2.35)
$\displaystyle \mathrm{with   } A'(x,y)$ $\displaystyle =$ $\displaystyle \frac{A(x,y)}{\sqrt{1-x^2-y^2}}$ (2.36)

i.e. basically a 2-D Fourier Transform of $ A I$, but with a phase error term $ \pi
(x^2+y^2) w$. Hence, on limited field of views, the relationship between the sky brightness (multiplied by the antenna power pattern) and the visibility reduces to a simple 2-D Fourier transform.

There are other approximations related to field of view limitations. Let us quantify these approximations.

To better fix the importance of such approximations, the relevant values for the Plateau de Bure interferometer are given in Table 2.1.

Table 2.1: Field of view limitations as function of angular resolution and observing frequency for the Plateau de Bure interferometer.
Config. Resolution Frequency 2-D 0.5 GHz 1 Min Time Primary
    (GHz) Field Bandwidth Averaging Beam
Compact 5$ ''$ 80 GHz 5$ '$ 80$ ''$ 2$ '$ 60$ ''$
Standard 2$ ''$ 80 GHz 3.5$ '$ 30$ ''$ 45$ ''$ 60$ ''$
Standard 2$ ''$ 220 GHz 3.5$ '$ 1.5$ '$ 45$ ''$ 24$ ''$
High 0.5$ ''$ 230 GHz 1.7$ '$ 22$ ''$ 12$ ''$ 24$ ''$


Note that these fields of view correspond to a maximum phase error of 6$ ^\circ$ only, or to a (one dimensional) distortion of a tenth of the synthesized beam, and thus are not strict limits. In particular, atmospheric errors often results in larger errors (which are independent of the field of view, however).


next up previous contents
Next: 2.6 Array Geometry & Up: 2. Millimetre Interferometers Previous: 2.4 Fringe Stopping and   Contents
Anne Dutrey